A fast transform for spherical harmonics

被引:0
|
作者
Martin J. Mohlenkamp
机构
[1] Yale University,Department of Mathematics
[2] University of Colorado,Department of Applied Mathematics
来源
Journal of Fourier Analysis and Applications | 1999年 / 5卷
关键词
Primary 65T20; secondary 42C10; 33C55; spherical harmonics; fast transforms; associated Legendre functions;
D O I
暂无
中图分类号
学科分类号
摘要
Spherical harmonics arise on the sphere S2 in the same way that the (Fourier) exponential functions {eikθ}k∈ℤ arise on the circle. Spherical harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform (FFT). Without a fast transform, evaluating (or expanding in) spherical harmonic series on the computer is slow—for large computations probibitively slow. This paper provides a fast transform.
引用
收藏
页码:159 / 184
页数:25
相关论文
共 50 条
  • [31] Fractal Spherical Harmonics
    Navascues, M. A.
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [32] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    MEYER, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 135 - 157
  • [33] Concise redefinition of the solid spherical harmonics and its use in fast multipole methods
    Perez-Jorda, Jose M.
    Yang, Weitao
    Journal of Chemical Physics, 1996, 104 (20):
  • [34] Fast computation of photoionization in streamer discharges based on simplified spherical harmonics approximations
    Cai, Xinjing
    Sun, Yue
    Wang, Xinxin
    Zou, Xiaobing
    Lu, Zhiwei
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2015, 35 (12): : 3170 - 3175
  • [35] A concise redefinition of the solid spherical harmonics and its use in fast multipole methods
    PerezJorda, JM
    Yang, WT
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (20): : 8003 - 8006
  • [36] The addition theorem for spherical harmonics and monopole harmonics
    Fung, MK
    CHINESE JOURNAL OF PHYSICS, 2002, 40 (05) : 490 - 495
  • [37] SYMMETRIES OF SPHERICAL HARMONICS
    DEMARIANUNESMENDES, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) : 161 - 178
  • [38] GENERALIZED SPHERICAL HARMONICS
    PROTTER, MH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (07) : 616 - 616
  • [39] Spherical harmonics scaling
    Wang, Jiaping
    Xu, Kun
    Zhou, Kun
    Lin, Stephen
    Hu, Shimin
    Guo, Baining
    VISUAL COMPUTER, 2006, 22 (9-11): : 713 - 720
  • [40] ON COMPLEX SPHERICAL HARMONICS
    IKEDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1964, 32 (01): : 178 - &