Critical edges/nodes for the minimum spanning tree problem: complexity and approximation

被引:0
|
作者
Cristina Bazgan
Sonia Toubaline
Daniel Vanderpooten
机构
[1] Université Paris-Dauphine,LAMSADE
[2] Institut Universitaire de France,undefined
来源
关键词
Most vital edges/nodes; Min edge/node blocker; Minimum spanning tree; Complexity; Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the complexity and the approximation of the k most vital edges (nodes) and min edge (node) blocker versions for the minimum spanning tree problem (MST). We show that the k most vital edges MST problem is NP-hard even for complete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1. We also prove that the k most vital nodes MST problem is not approximable within a factor n1−ϵ, for any ϵ>0, unless NP=ZPP, even for complete graphs of order n with weights 0 or 1. Furthermore, we show that the min edge blocker MST problem is NP-hard even for complete graphs with weights 0 or 1 and that the min node blocker MST problem is NP-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1.
引用
收藏
页码:178 / 189
页数:11
相关论文
共 50 条
  • [31] The Minimum Moving Spanning Tree Problem
    Akitaya, Hugo A.
    Biniaz, Ahmad
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Maheshwari, Anil
    da Silveira, Luis Fernando Schultz Xavier
    Smid, Michiel
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 15 - 28
  • [32] Minimum spanning tree: ordering edges to identify clustering structure
    Forina, M
    Oliveros, MCC
    Casolino, C
    Casale, M
    [J]. ANALYTICA CHIMICA ACTA, 2004, 515 (01) : 43 - 53
  • [33] Min-degree constrained minimum spanning tree problem: complexity, properties, and formulations
    de Almeida, Ana Maria
    Martins, Pedro
    de Souza, Mauricio C.
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2012, 19 (03) : 323 - 352
  • [34] Simulated Annealing is a Polynomial-Time Approximation Scheme for the Minimum Spanning Tree Problem
    Doerr, Benjamin
    Rajabi, Amirhossein
    Witt, Carsten
    [J]. ALGORITHMICA, 2024, 86 (01) : 64 - 89
  • [35] Simulated Annealing is a Polynomial-Time Approximation Scheme for the Minimum Spanning Tree Problem
    Benjamin Doerr
    Amirhossein Rajabi
    Carsten Witt
    [J]. Algorithmica, 2024, 86 : 64 - 89
  • [36] Approximation Algorithms for the Capacitated Minimum Spanning Tree Problem and its Variants in Network Design
    Jothi, Raja
    Raghavachari, Balaji
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (02) : 265 - 282
  • [37] An O(log k)-approximation algorithm for the k minimum spanning tree problem in the plane
    Garg, N
    Hochbaum, DS
    [J]. ALGORITHMICA, 1997, 18 (01) : 111 - 121
  • [38] Simulated Annealing is a Polynomial-Time Approximation Scheme for the Minimum Spanning Tree Problem
    Doerr, Benjamin
    Rajabi, Amirhossein
    Witt, Carsten
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 1381 - 1389
  • [39] Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design
    Jothi, R
    Raghavachari, B
    [J]. AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 805 - 818
  • [40] The parameterized complexity of the minimum shared edges problem
    Fluschnik, Till
    Kratsch, Stefan
    Niedermeier, Rolf
    Sorge, Manuel
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2019, 106 : 23 - 48