Components of the Hilbert scheme of smooth projective curves using ruled surfaces

被引:0
|
作者
Youngook Choi
Hristo Iliev
Seonja Kim
机构
[1] Yeungnam University,Department of Mathematics Education
[2] American University in Bulgaria,Department of Electronic Engineering
[3] Institute of Mathematics and Informatics,undefined
[4] Bulgarian Academy of Sciences,undefined
[5] Chungwoon University,undefined
来源
manuscripta mathematica | 2021年 / 164卷
关键词
Primary 14C05; Secondary 14H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} be the union of irreducible components of the Hilbert scheme whose general points correspond to smooth irreducible non-degenerate curves of degree d and genus g in Pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^r$$\end{document}. We use families of curves on cones to show that under certain numerical assumptions for d, g and r, the scheme Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} acquires generically smooth components whose general points correspond to curves that are double covers of irrational curves. In particular, in the case ρ(d,g,r):=g-(r+1)(g-d+r)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (d,g,r) := g-(r+1)(g-d+r) \ge 0$$\end{document} we construct explicitly a regular component that is different from the distinguished component of Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} dominating the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document}. Our result implies also that if g≥57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 57$$\end{document} then I4g3,g,g+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{\frac{4g}{3}, g, \frac{g+1}{2}}$$\end{document} has at least two generically smooth components parametrizing linearly normal curves.
引用
收藏
页码:395 / 408
页数:13
相关论文
共 50 条