Components of the Hilbert scheme of smooth projective curves using ruled surfaces

被引:0
|
作者
Youngook Choi
Hristo Iliev
Seonja Kim
机构
[1] Yeungnam University,Department of Mathematics Education
[2] American University in Bulgaria,Department of Electronic Engineering
[3] Institute of Mathematics and Informatics,undefined
[4] Bulgarian Academy of Sciences,undefined
[5] Chungwoon University,undefined
来源
manuscripta mathematica | 2021年 / 164卷
关键词
Primary 14C05; Secondary 14H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} be the union of irreducible components of the Hilbert scheme whose general points correspond to smooth irreducible non-degenerate curves of degree d and genus g in Pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^r$$\end{document}. We use families of curves on cones to show that under certain numerical assumptions for d, g and r, the scheme Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} acquires generically smooth components whose general points correspond to curves that are double covers of irrational curves. In particular, in the case ρ(d,g,r):=g-(r+1)(g-d+r)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (d,g,r) := g-(r+1)(g-d+r) \ge 0$$\end{document} we construct explicitly a regular component that is different from the distinguished component of Id,g,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{d,g,r}$$\end{document} dominating the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document}. Our result implies also that if g≥57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 57$$\end{document} then I4g3,g,g+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_{\frac{4g}{3}, g, \frac{g+1}{2}}$$\end{document} has at least two generically smooth components parametrizing linearly normal curves.
引用
收藏
页码:395 / 408
页数:13
相关论文
共 50 条
  • [21] GOOD COMPONENTS OF HILBERT SCHEMES OF SMOOTH CURVES IN PN
    BALLICO, E
    ELLIA, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (04): : 187 - 190
  • [22] Hilbert curves of conic fibrations over smooth surfaces
    Fania, Maria Lucia
    Lanteri, Antonio
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 545 - 566
  • [23] On the number of components of the Hilbert scheme of ACM space curves
    Ginouillac, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (10): : 857 - 862
  • [24] Non-reduced Components of the Hilbert Scheme of Curves Using Triple Covers
    Choi, Youngook
    Iliev, Hristo
    Kim, Seonja
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (04)
  • [25] ON THE EXISTENCE OF NICE COMPONENTS IN THE HILBERT SCHEME H(D,G) OF SMOOTH CONNECTED SPACE-CURVES
    KLEPPE, JO
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8B (02): : 305 - 326
  • [26] Reducibility of the Hilbert Scheme of Smooth Curves and Families of Double Covers
    Choi, Youngook
    Iliev, Hristo
    Kim, Seonja
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 583 - 600
  • [27] THE COHOMOLOGY RING OF THE HILBERT SCHEME OF 3 POINTS ON A SMOOTH PROJECTIVE VARIETY
    FANTECHI, B
    GOTTSCHE, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 439 : 147 - 158
  • [28] A REMARK ON THE HILBERT SCHEME OF SMOOTH COMPLEX-SPACE CURVES
    KEEM, C
    MANUSCRIPTA MATHEMATICA, 1991, 71 (03) : 307 - 316
  • [29] A direct limit for limit Hilbert-Kunz multiplicity for smooth projective curves
    Brenner, Holger
    Li, Jinjia
    Miller, Claudia
    JOURNAL OF ALGEBRA, 2012, 372 : 488 - 504
  • [30] Fundamental group schemes of Hilbert scheme of n points on a smooth projective surface
    Paul, Arjun
    Sebastian, Ronnie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 164