Constructions of MDS symbol-pair codes with minimum distance seven or eight

被引:0
|
作者
Junru Ma
Jinquan Luo
机构
[1] Hubei University,Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics
[2] Central China Normal University,School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences
来源
关键词
MDS symbol-pair codes; Minimum symbol-pair distance; Constacyclic codes; Repeated-root cyclic codes; 94B15; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Symbol-pair codes are proposed to guard against pair-errors in symbol-pair read channels. The minimum symbol-pair distance plays a vital role in determining the error-correcting capability and the constructions of symbol-pair codes with largest possible minimum symbol-pair distance is of great importance. Maximum distance separable (MDS) symbol-pair codes are optimal in the sense that such codes can acheive the Singleton bound. In this paper, for length 5p, two new classes of MDS symbol-pair codes with minimum symbol-pair distance seven or eight are constructed by utilizing repeated-root cyclic codes over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p}$$\end{document}, where p is a prime. In addition, we derive a class of MDS symbol-pair codes with minimum symbol-pair distance seven and length 4p.
引用
收藏
页码:2337 / 2359
页数:22
相关论文
共 50 条
  • [21] Maximum Distance Separable Codes for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Ji, Lijun
    Kiah, Han Mao
    Wang, Chengmin
    Yin, Jianxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7259 - 7267
  • [22] Cyclic codes of length 5p with MDS symbol-pair
    Fengwei Li
    Designs, Codes and Cryptography, 2023, 91 : 1873 - 1888
  • [23] ON SYMBOL-PAIR DISTANCE DISTRIBUTIONS OF REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4ps AND MDS CODES
    Dinh, Hai q.
    Singh, Abhay kumar
    Thakur, Madhu kant
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025,
  • [24] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [25] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Ma, Junru
    Luo, Jinquan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (01): : 101 - 115
  • [26] New Families of MDS Symbol-Pair Codes From Matrix-Product Codes
    Luo, Gaojun
    Ezerman, Martianus Frederic
    Ling, San
    Pan, Xu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (03) : 1567 - 1587
  • [27] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Junru Ma
    Jinquan Luo
    Cryptography and Communications, 2021, 13 : 101 - 115
  • [28] MDS and AMDS symbol-pair codes constructed from repeated-root cyclic codes
    Tang, Xiuxin
    Luo, Rong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [29] Codes for Symbol-Pair Read Channels
    Cassuto, Yuval
    Blaum, Mario
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 8011 - 8020
  • [30] List Decodability of Symbol-Pair Codes
    Liu, Shu
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4815 - 4821