New Families of MDS Symbol-Pair Codes From Matrix-Product Codes

被引:7
|
作者
Luo, Gaojun [1 ]
Ezerman, Martianus Frederic [1 ,2 ]
Ling, San [1 ]
Pan, Xu [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Sandhiguna, Kota Batam 29461, Kepulauan Riau, Indonesia
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Symbols; Hamming distances; Codecs; Writing; Scholarships; Reed-Solomon codes; Matrix-product code; maximum distance separable code; symbol-pair code; ROOT CONSTACYCLIC CODES; CYCLIC CODES; DISTANCE; CONSTRUCTIONS; POLYNOMIALS;
D O I
10.1109/TIT.2022.3220638
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In emerging storage technologies, the outputs of the channels consist of overlapping pairs of symbols. The errors are no longer individual symbols. Controlling them calls for a different approach. Symbol-pair codes have been proposed as a solution. The error-correcting capability of such a code depends on its minimum pair distance instead of the usual minimum Hamming distance. Longer codes can be conveniently constructed from known shorter ones by a matrix-product approach. The parameters of a matrix-product code can be determined from the parameters of the ingredient codes. We construct a new family of maximum distance separable (MDS) symbol-pair matrix-product codes. Codes which are permutation equivalent to matrix-product codes may have improved minimum pair distances. We present four new families of MDS symbol-pair codes and a new family of almost MDS symbol-pair codes. The codes in these five new families are permutation equivalent to matrix-product codes. Each of our five constructions identifies permutations that can increase the minimum pair distances. We situate the new families among previously known families of MDS symbol-pair codes to highlight the versatility of our matrix-product construction route.
引用
收藏
页码:1567 / 1587
页数:21
相关论文
共 50 条
  • [1] New constructions of MDS symbol-pair codes
    Baokun Ding
    Gennian Ge
    Jun Zhang
    Tao Zhang
    Yiwei Zhang
    Designs, Codes and Cryptography, 2018, 86 : 841 - 859
  • [2] A Construction of New MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5828 - 5834
  • [3] New constructions of MDS symbol-pair codes
    Ding, Baokun
    Ge, Gennian
    Zhang, Jun
    Zhang, Tao
    Zhang, Yiwei
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 841 - 859
  • [4] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    IEEE ACCESS, 2021, 9 : 137970 - 137990
  • [5] New MDS Symbol-Pair Codes From Repeated-Root Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Zhao, Yusen
    Luo, Huarong
    Chen, Zhe
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (03) : 462 - 465
  • [6] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    Nguyen, Bac T. (nguyentrongbac@duytan.edu.vn), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 137970 - 137990
  • [7] Two New Classes of MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhou, Yajing
    Zhu, Shixin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7701 - 7710
  • [8] MDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 121 - 137
  • [9] MDS symbol-pair codes from repeated-root cyclic codes
    Junru Ma
    Jinquan Luo
    Designs, Codes and Cryptography, 2022, 90 : 121 - 137
  • [10] MDS and AMDS symbol-pair codes constructed from repeated-root cyclic codes
    Tang, Xiuxin
    Luo, Rong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89