New Families of MDS Symbol-Pair Codes From Matrix-Product Codes

被引:7
|
作者
Luo, Gaojun [1 ]
Ezerman, Martianus Frederic [1 ,2 ]
Ling, San [1 ]
Pan, Xu [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Sandhiguna, Kota Batam 29461, Kepulauan Riau, Indonesia
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Symbols; Hamming distances; Codecs; Writing; Scholarships; Reed-Solomon codes; Matrix-product code; maximum distance separable code; symbol-pair code; ROOT CONSTACYCLIC CODES; CYCLIC CODES; DISTANCE; CONSTRUCTIONS; POLYNOMIALS;
D O I
10.1109/TIT.2022.3220638
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In emerging storage technologies, the outputs of the channels consist of overlapping pairs of symbols. The errors are no longer individual symbols. Controlling them calls for a different approach. Symbol-pair codes have been proposed as a solution. The error-correcting capability of such a code depends on its minimum pair distance instead of the usual minimum Hamming distance. Longer codes can be conveniently constructed from known shorter ones by a matrix-product approach. The parameters of a matrix-product code can be determined from the parameters of the ingredient codes. We construct a new family of maximum distance separable (MDS) symbol-pair matrix-product codes. Codes which are permutation equivalent to matrix-product codes may have improved minimum pair distances. We present four new families of MDS symbol-pair codes and a new family of almost MDS symbol-pair codes. The codes in these five new families are permutation equivalent to matrix-product codes. Each of our five constructions identifies permutations that can increase the minimum pair distances. We situate the new families among previously known families of MDS symbol-pair codes to highlight the versatility of our matrix-product construction route.
引用
收藏
页码:1567 / 1587
页数:21
相关论文
共 50 条
  • [21] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [22] Codes for Symbol-Pair Read Channels
    Cassuto, Yuval
    Blaum, Mario
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 8011 - 8020
  • [23] List Decodability of Symbol-Pair Codes
    Liu, Shu
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4815 - 4821
  • [24] A NEW CLASS OF AMDS SYMBOL-PAIR CODES FROM REPEATED-ROOT CODES
    Yang, Jin
    Kai, Xiaoshan
    Tang, Yongsheng
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [25] Cyclic codes of length 5p with MDS symbol-pair
    Fengwei Li
    Designs, Codes and Cryptography, 2023, 91 : 1873 - 1888
  • [26] NEW LINEAR CODES FROM MATRIX-PRODUCT CODES WITH POLYNOMIAL UNITS
    Hernando, Fernando
    Ruano, Diego
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (03) : 363 - 367
  • [27] Syndrome Decoding of Symbol-Pair Codes
    Takita, Makoto
    Hirotomo, Masanori
    Morii, Masakatu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2423 - 2428
  • [28] New Bounds on the Code Size of Symbol-Pair Codes
    Chen, Bocong
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 941 - 950
  • [29] Codes for Symbol-Pair Read Channels
    Cassuto, Yuval
    Blaum, Mario
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 988 - 992
  • [30] Syndrome Decoding of Symbol-Pair Codes
    Hirotomo, Masanori
    Takita, Makoto
    Morii, Masakatu
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 162 - 166