Inferring biological tasks using Pareto analysis of high-dimensional data

被引:1
|
作者
Hart Y. [1 ]
Sheftel H. [1 ]
Hausser J. [1 ]
Szekely P. [1 ]
Ben-Moshe N.B. [2 ]
Korem Y. [1 ]
Tendler A. [1 ]
Mayo A.E. [1 ]
Alon U. [1 ]
机构
[1] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
[2] Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot
基金
欧洲研究理事会;
关键词
D O I
10.1038/nmeth.3254
中图分类号
学科分类号
摘要
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks. © 2015 Nature America, Inc.
引用
收藏
页码:233 / 235
页数:2
相关论文
共 50 条
  • [41] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    [J]. NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [42] Navigating in the vast and deep oceans of high-dimensional biological data Introduction
    Tchitchek, Nicolas
    [J]. METHODS, 2018, 132 : 1 - 2
  • [43] Similarity joins for high-dimensional data using Spark
    Rong, Chuitian
    Cheng, Xiaohai
    Chen, Ziliang
    Huo, Na
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (20):
  • [44] Cluster analysis of high-dimensional data: A case study
    Bean, R
    McLachlan, G
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 302 - 310
  • [45] A modified linear discriminant analysis for high-dimensional data
    Hyodo, Masashi
    Yamada, Takayuki
    Himeno, Tetsuto
    Seo, Takashi
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2012, 42 (02) : 209 - 231
  • [46] On landmark selection and sampling in high-dimensional data analysis
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4295 - 4312
  • [48] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [49] Forecasting the Japanese macroeconomy using high-dimensional data
    Nakajima, Yoshiki
    Sueishi, Naoya
    [J]. JAPANESE ECONOMIC REVIEW, 2022, 73 (02) : 299 - 324
  • [50] Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data
    Yamada, Makoto
    Tang, Jiliang
    Lugo-Martinez, Jose
    Hodzic, Ermin
    Shrestha, Raunak
    Saha, Avishek
    Ouyang, Hua
    Yin, Dawei
    Mamitsuka, Hiroshi
    Sahinalp, Cenk
    Radivojac, Predrag
    Menczer, Filippo
    Chang, Yi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (07) : 1352 - 1365