Inferring biological tasks using Pareto analysis of high-dimensional data

被引:1
|
作者
Hart Y. [1 ]
Sheftel H. [1 ]
Hausser J. [1 ]
Szekely P. [1 ]
Ben-Moshe N.B. [2 ]
Korem Y. [1 ]
Tendler A. [1 ]
Mayo A.E. [1 ]
Alon U. [1 ]
机构
[1] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
[2] Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot
基金
欧洲研究理事会;
关键词
D O I
10.1038/nmeth.3254
中图分类号
学科分类号
摘要
We present the Pareto task inference method (ParTI; http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for inferring biological tasks from high-dimensional biological data. Data are described as a polytope, and features maximally enriched closest to the vertices (or archetypes) allow identification of the tasks the vertices represent. We demonstrate that human breast tumors and mouse tissues are well described by tetrahedrons in gene expression space, with specific tumor types and biological functions enriched at each of the vertices, suggesting four key tasks. © 2015 Nature America, Inc.
引用
收藏
页码:233 / 235
页数:2
相关论文
共 50 条
  • [31] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [32] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    [J]. JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [33] Estimating Cellular Goals from High-Dimensional Biological Data
    Yang, Laurence
    Saunders, Michael A.
    Lachance, Jean-Christophe
    Palsson, Bernhard O.
    Bento, Jose
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2202 - 2211
  • [34] Forecasting High-Dimensional Covariance Matrices Using High-Dimensional Principal Component Analysis
    Shigemoto, Hideto
    Morimoto, Takayuki
    [J]. AXIOMS, 2022, 11 (12)
  • [35] Visualising High-Dimensional Pareto Relationships in Two-Dimensional Scatterplots
    Fieldsend, Jonathan
    Everson, Richard
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 558 - 572
  • [36] High-dimensional data structure analysis using Self-Organising Maps
    Hodych, Oles
    Nikolski, Iouri
    Pasichnyk, Volodymyr
    Shcherbyna, Yuri
    [J]. 2007 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON THE EXPERIENCE OF DESIGNING AND APPLICATION OF CAD SYSTEMS IN MICROELECTRONICS, 2007, : 218 - 221
  • [37] Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data
    Fernandez, Nicolas F.
    Gundersen, Gregory W.
    Rahman, Adeeb
    Grimes, Mark L.
    Rikova, Klarisa
    Hornbeck, Peter
    Ma'ayan, Avi
    [J]. SCIENTIFIC DATA, 2017, 4
  • [38] Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data
    Nicolas F. Fernandez
    Gregory W. Gundersen
    Adeeb Rahman
    Mark L. Grimes
    Klarisa Rikova
    Peter Hornbeck
    Avi Ma’ayan
    [J]. Scientific Data, 4
  • [39] Author Correction: Visualizing structure and transitions in high-dimensional biological data
    Kevin R. Moon
    David van Dijk
    Zheng Wang
    Scott Gigante
    Daniel B. Burkhardt
    William S. Chen
    Kristina Yim
    Antonia van den Elzen
    Matthew J. Hirn
    Ronald R. Coifman
    Natalia B. Ivanova
    Guy Wolf
    Smita Krishnaswamy
    [J]. Nature Biotechnology, 2020, 38 : 108 - 108
  • [40] Forecasting the Japanese macroeconomy using high-dimensional data
    Yoshiki Nakajima
    Naoya Sueishi
    [J]. The Japanese Economic Review, 2022, 73 : 299 - 324