Algorithms for Computing Sparse Shifts for Multivariate Polynomials

被引:0
|
作者
Dima Yu. Grigoriev
Y. N. Lakshman
机构
[1] IRMAR Université Rennes-1 Campus Beaulieu,
[2] 35042 Rennes,undefined
[3] France (e-mail: dima@maths.univ-rennes1.fr),undefined
[4] Computing Science Research,undefined
[5] Bell Labs.,undefined
[6] 600 Mountain Hill,undefined
[7] Murray Hill,undefined
[8] NJ,undefined
[9] 07974,undefined
[10] USA (e-mail: ynl@research.bell-labs.com),undefined
关键词
Keywords: Shifted sparse polynomial, Gröbner bases, Complexity. ">;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the problem of finding t-sparse shifts for multivariate polynomials. Given a polynomial f∈ℱ[x1, x2, …, xn] of degree d, and a positive integer t, we consider the problem of representing f(x) as a ?-linear combination of the power products of ui where ui = xi−bi for some bi∈?, an extension of ℱ, for i = 1, …, n, i.e., f = ∑jFjuαj, in which at most t of the Fj are non-zero. We provide sufficient conditions for uniqueness of sparse shifts for multivariate polynomials, prove tight bounds on the degree of the polynomial being interpolated in terms of the sparsity bound t and a bound on the size of the coefficients of the polynomial in the standard representation, and describe two new efficient algorithms for computing sparse shifts for a multivariate polynomial.
引用
收藏
页码:43 / 67
页数:24
相关论文
共 50 条
  • [21] Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials
    Hubert, Evelyne
    Singer, Michael F.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (06) : 1801 - 1862
  • [22] Algorithms for computing chromatic polynomials and chromatic index polynomials
    Hordofa, Lateram Zawuga
    Repalle, V. N. SrinivasaRao
    Ashebo, Mamo Abebe
    SCIENTIFIC AFRICAN, 2024, 24
  • [23] Efficiently Computing Real Roots of Sparse Polynomials
    Jindal, Gorav
    Sagraloff, Michael
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 229 - 236
  • [24] Extracting sparse factors from multivariate integral polynomials
    Allem, Luiz Emilio
    Gao, Shuhong
    Trevisan, Vilmar
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 52 : 3 - 16
  • [25] Algorithms for Modular Counting of Roots of Multivariate Polynomials
    Parikshit Gopalan
    Venkatesan Guruswami
    Richard J. Lipton
    Algorithmica, 2008, 50 : 479 - 496
  • [26] Sparse multivariate polynomial interpolation on the basis of Schubert polynomials
    Mukhopadhyay, Priyanka
    Qiao, Youming
    COMPUTATIONAL COMPLEXITY, 2017, 26 (04) : 881 - 909
  • [27] Sparse multivariate polynomial interpolation on the basis of Schubert polynomials
    Priyanka Mukhopadhyay
    Youming Qiao
    computational complexity, 2017, 26 : 881 - 909
  • [28] Symbolic-numeric sparse interpolation of multivariate polynomials
    Giesbrecht, Mark
    Labahn, George
    Lee, Wen-shin
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (08) : 943 - 959
  • [29] A unified approach to evaluation algorithms for multivariate polynomials
    Lodha, SK
    Goldman, R
    MATHEMATICS OF COMPUTATION, 1997, 66 (220) : 1521 - 1553
  • [30] Noisy Interpolation of Multivariate Sparse Polynomials in Finite Fields
    Ibeas, Alvar
    Winterhof, Arne
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 169 - +