Efficiently Computing Real Roots of Sparse Polynomials

被引:2
|
作者
Jindal, Gorav [1 ]
Sagraloff, Michael [1 ]
机构
[1] Max Planck Inst Informat, Campus E1 4, D-66123 Saarbrucken, Germany
关键词
FACTORIZATION;
D O I
10.1145/3087604.3087652
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an efficient algorithm to compute the real roots of a sparse polynomial f is an element of R[x] having k non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of a coefficient oracle. For a given positive integer L, our algorithm returns disjoint disks Delta(1),..., Delta(s) subset of C, with s < 2k, centered at the real axis and of radius less than 2(-L) together with positive integers mu(1),..., mu(s) such that each disk Delta(i) contains exactly mu(i) roots of f counted with multiplicity. In addition, it is ensured that each real root of f is contained in one of the disks. If f has only simple real roots, our algorithm can also be used to isolate all real roots. The bit complexity of our algorithm is polynomial in k and log n, and near-linear in L and tau, where 2(-tau) and 2(tau) constitute lower and upper bounds on the absolute values of the non-zero coefficients of f, and n is the degree of f. For root isolation, the bit complexity is polynomial in k and log n, and near-linear in tau and log sigma(-1), where sigma denotes the separation of the real roots.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [1] Computing real roots of real polynomials
    Sagraloff, Michael
    Mehlhorn, Kurt
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 73 : 46 - 86
  • [2] Computing Real Roots of Real Polynomials ... and now For Real!
    Kobel, Alexander
    Rouillier, Fabrice
    Sagraloff, Michael
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 303 - 310
  • [3] Computing the number of real roots of polynomials through neural networks
    Mourrain, B
    Pavlidis, NG
    Tasoulis, DK
    Vrahatis, MN
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 276 - 279
  • [4] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 266 - 278
  • [5] Computing Sparse Multiples of Polynomials
    Mark Giesbrecht
    Daniel S. Roche
    Hrushikesh Tilak
    Algorithmica, 2012, 64 : 454 - 480
  • [6] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    ALGORITHMICA, 2012, 64 (03) : 454 - 480
  • [7] Efficiently Testing Sparse GF(2) Polynomials
    Ilias Diakonikolas
    Homin K. Lee
    Kevin Matulef
    Rocco A. Servedio
    Andrew Wan
    Algorithmica, 2011, 61 : 580 - 605
  • [8] Efficiently testing sparse GF (2) polynomials
    Diakonikolas, Ilias
    Lee, Homin K.
    Matulef, Kevin
    Servedio, Rocco A.
    Wan, Andrew
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 502 - 514
  • [9] Efficiently Testing Sparse GF(2) Polynomials
    Diakonikolas, Ilias
    Lee, Homin K.
    Matulef, Kevin
    Servedio, Rocco A.
    Wan, Andrew
    ALGORITHMICA, 2011, 61 (03) : 580 - 605
  • [10] On the Real Roots of -Polynomials
    Brown, Jason I.
    Erey, Aysel
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1723 - 1730