RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting

被引:0
|
作者
Kiran Kumar Chandriah
Raghavendra V. Naraganahalli
机构
[1] Visveswaraya Technological University,Department of Mechanical Engineering
[2] National Institute of Engineering (NIE),Department of Mechanical Engineering
来源
关键词
Demand forecasting; Deep learning; Long-short term memory; Modified-Adam; Recurrent neural networks; Spare parts;
D O I
暂无
中图分类号
学科分类号
摘要
The spare parts demand forecasting is very much essential for the organizations to minimize the cost and prevent the stock outs. The demand of spare parts/ car sales distribution is an important factor in inventory control. The valuation of the demand is challenging as the automobile spare parts/car sales demand are often recurrent. The renowned empirical method adopts historical demand data to create the distribution of lead time demand. Although it works reasonably well when service requirements are relatively low, it has difficulty reaching high target service levels. In this paper, we proposed Recurrent Neural Networks/ Long-Short Term Memory (RNN / LSTM) with modified Adam optimizer to predict the demand for spare parts. In this LSTM, weight vectors are generated respectively. These weights are optimized using the Modified-Adam algorithm. The accuracy of the forecast and the performance of the inventory are considered in the experimental result. Experimental results confirm that RNN / LSTM with a Modified-Adam works well with minimal error compared to other existing methods. We conclude that the proposed RNN/LSTM with Modified-Adam algorithm is well suited for the prediction of automobile spare parts.
引用
收藏
页码:26145 / 26159
页数:14
相关论文
共 50 条
  • [21] Regional Manufacturing Industry Demand Forecasting: A Deep Learning Approach
    Dou, Zixin
    Sun, Yanming
    Zhang, Yuan
    Wang, Tao
    Wu, Chuliang
    Fan, Shiqi
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [22] A double-level combination approach for demand forecasting of repairable airplane spare parts based on turnover data
    Guo, Feng
    Diao, Jun
    Zhao, Qiuhong
    Wang, Dexin
    Sun, Qiang
    COMPUTERS & INDUSTRIAL ENGINEERING, 2017, 110 : 92 - 108
  • [23] A novel bidirectional LSTM deep learning approach for COVID-19 forecasting
    Aung, Nway Nway
    Pang, Junxiong
    Chua, Matthew Chin Heng
    Tan, Hui Xing
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [24] A novel bidirectional LSTM deep learning approach for COVID-19 forecasting
    Nway Nway Aung
    Junxiong Pang
    Matthew Chin Heng Chua
    Hui Xing Tan
    Scientific Reports, 13
  • [25] Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach
    Seabe, Phumudzo Lloyd
    Moutsinga, Claude Rodrigue Bambe
    Pindza, Edson
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [26] LSTM-Based Deep Learning Models for Long-Term Tourism Demand Forecasting
    Salamanis, Athanasios
    Xanthopoulou, Georgia
    Kehagias, Dionysios
    Tzovaras, Dimitrios
    ELECTRONICS, 2022, 11 (22)
  • [27] Smart Grid Energy Management Using RNN-LSTM: A Deep Learning-based Approach
    Kaur, Devinder
    Kumar, Rahul
    Kumar, Neeraj
    Guizani, Mohsen
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [28] Deep Learning Approach to Power Demand Forecasting in Polish Power System
    Ciechulski, Tomasz
    Osowski, Stanislaw
    ENERGIES, 2020, 13 (22)
  • [29] Leveraging online reviews for hotel demand forecasting: A deep learning approach
    Zhang, Dong
    Niu, Baozhuang
    Information Processing and Management, 2024, 61 (01):
  • [30] Leveraging online reviews for hotel demand forecasting: A deep learning approach
    Zhang, Dong
    Niu, Baozhuang
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)