Asymptotic Behavior of Solutions of Free Boundary Problems for Fisher-KPP Equation

被引:0
|
作者
Jingjing Cai
Hong Gu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Nanjing University of Finance and Economics,School of Applied Mathematics
关键词
Fisher-KPP equation; Free boundary problem; Compactly supported traveling wave; Non-monotonous traveling semi-wave; 35K20; 35K55; 35B40; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a free boundary problem for Fisher-KPP equation: ut=uxx+f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t=u_{xx}+f(u)$$\end{document} (g(t)<x<h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(t)< x < h(t)$$\end{document}) with free boundary conditions h′(t)=-ux(t,h(t))-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h'(t)=-u_x(t,h(t))-\beta $$\end{document} and g′(t)=-ux(t,g(t))-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'(t)=-u_x(t,g(t))-\alpha $$\end{document} for α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in \mathbb {R}$$\end{document}. Such a free boundary problem can model the spreading of a biological or chemical species affected by the boundary environment. β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} means that there is a “resistance force” with strength β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} at boundary x=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=h(t)$$\end{document}. β<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta <0$$\end{document} (resp. α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}) means that there is an enhancing force with strength β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (resp. α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) at the boundary x=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=h(t)$$\end{document} (resp. g(t)). There are many parts of (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}. In different parts, the asymptotic behavior of solutions are different. In the first part, we have a spreading-transition-vanishing result: either spreading happens (the solution converges to 1 in the moving frame), or in the transition case (the solution will converge to the compactly supported traveling wave), or vanishing happens (the solution converges to 0 within a finite time). In the second part, we also have a trichotomy result, but in transition case the solution will converge to the non-monotonous traveling semi-wave, and the vanishing case has three different types. For the third part, only spreading happens for any solution. In the fourth part (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} or β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} large), any solution will vanish, also there are three types of vanishing. For the case α=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \beta $$\end{document}, we have two different trichotomy results and a dichotomy result.
引用
收藏
页码:913 / 940
页数:27
相关论文
共 50 条
  • [41] On the Fisher-KPP equation with fast nonlinear diffusion
    King, JR
    McCabe, PM
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2038): : 2529 - 2546
  • [42] Convergence to a single wave in the Fisher-KPP equation
    James Nolen
    Jean-Michel Roquejoffre
    Lenya Ryzhik
    Chinese Annals of Mathematics, Series B, 2017, 38 : 629 - 646
  • [43] On a finite population variation of the Fisher-KPP equation
    Griffin, Christopher
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [44] Monotone wavefronts of the nonlocal Fisher-KPP equation
    Fang, Jian
    Zhao, Xiao-Qiang
    NONLINEARITY, 2011, 24 (11) : 3043 - 3054
  • [45] THE FISHER-KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION
    Stan, Diana
    Luis Vazquez, Juan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3241 - 3276
  • [46] Propagation dynamics of Fisher-KPP equation with time delay and free boundaries
    Sun, Ningkui
    Fang, Jian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [47] SHARP INTERFACE LIMIT OF THE FISHER-KPP EQUATION
    Alfaro, Matthieu
    Ducrot, Arnaud
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (01) : 1 - 18
  • [48] Convergence to a Single Wave in the Fisher-KPP Equation
    Nolen, James
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 629 - 646
  • [49] Non-cooperative Fisher-KPP systems: Asymptotic behavior of traveling waves
    Girardin, Leo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (06): : 1067 - 1104
  • [50] ENTIRE SOLUTIONS TO A LATTICE FISHER-KPP SYSTEM
    Cheng, Cui-Ping
    Lou, Bendong
    Suo, Jinzhe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2391 - 2410