Asymptotic Behavior of Solutions of Free Boundary Problems for Fisher-KPP Equation

被引:0
|
作者
Jingjing Cai
Hong Gu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Nanjing University of Finance and Economics,School of Applied Mathematics
关键词
Fisher-KPP equation; Free boundary problem; Compactly supported traveling wave; Non-monotonous traveling semi-wave; 35K20; 35K55; 35B40; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a free boundary problem for Fisher-KPP equation: ut=uxx+f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t=u_{xx}+f(u)$$\end{document} (g(t)<x<h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(t)< x < h(t)$$\end{document}) with free boundary conditions h′(t)=-ux(t,h(t))-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h'(t)=-u_x(t,h(t))-\beta $$\end{document} and g′(t)=-ux(t,g(t))-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'(t)=-u_x(t,g(t))-\alpha $$\end{document} for α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in \mathbb {R}$$\end{document}. Such a free boundary problem can model the spreading of a biological or chemical species affected by the boundary environment. β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} means that there is a “resistance force” with strength β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} at boundary x=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=h(t)$$\end{document}. β<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta <0$$\end{document} (resp. α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}) means that there is an enhancing force with strength β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (resp. α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) at the boundary x=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=h(t)$$\end{document} (resp. g(t)). There are many parts of (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}. In different parts, the asymptotic behavior of solutions are different. In the first part, we have a spreading-transition-vanishing result: either spreading happens (the solution converges to 1 in the moving frame), or in the transition case (the solution will converge to the compactly supported traveling wave), or vanishing happens (the solution converges to 0 within a finite time). In the second part, we also have a trichotomy result, but in transition case the solution will converge to the non-monotonous traveling semi-wave, and the vanishing case has three different types. For the third part, only spreading happens for any solution. In the fourth part (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} or β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} large), any solution will vanish, also there are three types of vanishing. For the case α=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \beta $$\end{document}, we have two different trichotomy results and a dichotomy result.
引用
收藏
页码:913 / 940
页数:27
相关论文
共 50 条
  • [21] The Stefan problem for the Fisher-KPP equation
    Du, Yihong
    Guo, Zongming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (03) : 996 - 1035
  • [22] Slow travelling wave solutions of the nonlocal Fisher-KPP equation
    Billingham, John
    NONLINEARITY, 2020, 33 (05) : 2106 - 2142
  • [23] On bounded positive stationary solutions for a nonlocal Fisher-KPP equation
    Achleitner, Franz
    Kuehn, Christian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 15 - 29
  • [24] Travelling fronts and entire solutions of the Fisher-KPP equation in RN
    Hamel, F
    Nadirashvili, N
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (02) : 91 - 163
  • [25] TRANSITION FRONTS FOR THE FISHER-KPP EQUATION
    Hamel, Francois
    Rossi, Luca
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) : 8675 - 8713
  • [26] Global existence for a free boundary problem of Fisher-KPP type
    Berestycki, Julien
    Brunet, Eric
    Penington, Sarah
    NONLINEARITY, 2019, 32 (10) : 3912 - 3939
  • [27] Entire solutions to advective Fisher-KPP equation on the half line
    Lou, Bendong
    Suo, Jinzhe
    Tan, Kaiyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 103 - 120
  • [28] Spreading in a cone for the Fisher-KPP equation
    Lou, Bendong
    Lu, Junfan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (12) : 7064 - 7084
  • [29] Fisher-KPP equation on the Heisenberg group
    Kashkynbayev, Ardak
    Suragan, Durvudkhan
    Torebek, Berikbol T.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2395 - 2403
  • [30] Analytical Solutions of the Fisher-KPP equations
    Yin, Weishi
    Jiang, Zhixia
    PROCEEDINGS OF THE 2015 3RD INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2015, 35 : 1840 - 1843