Ameliorated phase sensitivity through intensity measurements in a Mach–Zehnder interferometer

被引:0
|
作者
Jayanth Ramakrishnan
J. Solomon Ivan
机构
[1] Indian Institute of Space Science and Technology,Applied and Adaptive Optics laboratory Department of Physics
来源
关键词
Quantum metrology; Phase estimation; Intensity measurements; Quantum metrology; Mach-Zehnder interferometer;
D O I
暂无
中图分类号
学科分类号
摘要
The ultimate achievable phase sensitivity in a Mach–Zehnder interferometer is given by the Heisenberg limit of 1/⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\langle N\rangle $$\end{document}, with ⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle N \rangle $$\end{document} being the number of photons in the interferometer. However, the best-known phase sensitivity as obtained through intensity measurements is ≈2/⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 2/\langle N \rangle $$\end{document}. In this work, we provide examples of states that achieve improved phase sensitivity lesser than 2/⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2/\langle N \rangle $$\end{document}, albeit greater than 1/⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\langle N \rangle $$\end{document}. A modified scheme of the Mach–Zehnder interferometer that uses the first excited Fock state, single-mode squeezers, and an additional beam splitter is presented. It is shown that the modified scheme attains a phase sensitivity lesser than 2/⟨N⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2/\langle N \rangle $$\end{document}, through intensity measurements. The effect of attenuation and noise on phase sensitivity is considered. Phase sensitivity superior to the standard quantum limit is seen to persist for a finite range of attenuation and noise.
引用
收藏
相关论文
共 50 条
  • [31] Entanglement and Phase-Sensitivity of a Mach-Zehnder Interferometer for the Coherent Spin State Input
    Xiao-jie Yi
    International Journal of Theoretical Physics, 2017, 56 : 1116 - 1120
  • [32] Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer
    Li Shi-Yu
    Tian Jian-Feng
    Yang Chen
    Zuo Guan-Hua
    Zhang Yu-Chi
    Zhang Tian-Cai
    ACTA PHYSICA SINICA, 2018, 67 (23)
  • [33] Entanglement and Phase-Sensitivity of a Mach-Zehnder Interferometer for the Coherent Spin State Input
    Yi, Xiao-jie
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1116 - 1120
  • [34] High-sensitivity Mach-Zehnder interferometer for temperature and strain measurements based on an embedded microcavity
    Zhang, Zhao
    Cao, Zhigang
    Shui, Tao
    Yin, Chenchen
    Yin, Hao
    Tang, Haiyu
    Yu, Benli
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTICAL SENSORS AND APPLICATIONS, 2013, 9044
  • [35] Particle path through a nested Mach-Zehnder interferometer
    Griffiths, Robert B.
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [36] Phase-sharing using a Mach-Zehnder interferometer
    Thomas, Lijo
    Ivan, J. Solomon
    Yasir, P. A. Ameen
    Sharma, Richa
    Singh, Rakesh Kumar
    Narayanamurthy, C. S.
    Dasgupta, K. S.
    APPLIED OPTICS, 2015, 54 (04) : 699 - 706
  • [37] Anyonic interference and braiding phase in a Mach-Zehnder interferometer
    Hemanta Kumar Kundu
    Sourav Biswas
    Nissim Ofek
    Vladimir Umansky
    Moty Heiblum
    Nature Physics, 2023, 19 : 515 - 521
  • [38] Anyonic interference and braiding phase in a Mach-Zehnder interferometer
    Kundu, Hemanta Kumar
    Biswas, Sourav
    Ofek, Nissim
    Umansky, Vladimir
    Heiblum, Moty
    NATURE PHYSICS, 2023, 19 (04) : 515 - +
  • [39] Phase mask coronagraphy using a Mach-Zehnder interferometer
    Carlotti, A.
    Ricort, G.
    Aime, C.
    ASTRONOMY & ASTROPHYSICS, 2009, 504 (02) : 663 - 671
  • [40] Effects of losses on the sensitivity of an actively correlated Mach-Zehnder interferometer
    Jiao, Gao-Feng
    Wang, Qiang
    Yu, Zhifei
    Chen, L. Q.
    Zhang, Weiping
    Yuan, Chun-Hua
    PHYSICAL REVIEW A, 2021, 104 (01)