First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation with Laplace or Dirac Operators

被引:0
|
作者
M. Ferreira
M. M. Rodrigues
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Time-fractional telegraph equation; Time-fractional telegraph Dirac operator; First and second fundamental solutions; Caputo fractional derivative; Multivariate Mittag-Leffler function; H-function of two variables; Primary 30G35; Secondary 35R11; 26A33; 35A08; 35C15; 33E12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we obtain the first and second fundamental solutions (FS) of the multidimensional time-fractional equation with Laplace or Dirac operators, where the two time-fractional derivatives of orders α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in ]0,1]$$\end{document} and β∈]1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in ]1,2]$$\end{document} are in the Caputo sense. We obtain representations of the FS in terms of Hankel transform, double Mellin-Barnes integrals, and H-functions of two variables. As an application, the FS are used to solve Cauchy problems of Laplace and Dirac type.
引用
收藏
相关论文
共 50 条