First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation with Laplace or Dirac Operators

被引:0
|
作者
M. Ferreira
M. M. Rodrigues
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Time-fractional telegraph equation; Time-fractional telegraph Dirac operator; First and second fundamental solutions; Caputo fractional derivative; Multivariate Mittag-Leffler function; H-function of two variables; Primary 30G35; Secondary 35R11; 26A33; 35A08; 35C15; 33E12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we obtain the first and second fundamental solutions (FS) of the multidimensional time-fractional equation with Laplace or Dirac operators, where the two time-fractional derivatives of orders α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in ]0,1]$$\end{document} and β∈]1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in ]1,2]$$\end{document} are in the Caputo sense. We obtain representations of the FS in terms of Hankel transform, double Mellin-Barnes integrals, and H-functions of two variables. As an application, the FS are used to solve Cauchy problems of Laplace and Dirac type.
引用
收藏
相关论文
共 50 条
  • [21] Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators
    Ferreira, M.
    Vieira, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) : 329 - 353
  • [22] Finite Difference Approximation of a Generalized Time-Fractional Telegraph Equation
    Delic, Aleksandra
    Jovanovic, Bosko S.
    Zivanovic, Sandra
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 595 - 607
  • [23] Time-fractional telegraph equation with 111-Hilfer derivatives
    Vieira, N.
    Ferreira, M.
    Rodrigues, M. M.
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [24] A local meshless method to approximate the time-fractional telegraph equation
    Kumar, Alpesh
    Bhardwaj, Akanksha
    Dubey, Shruti
    ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 3473 - 3488
  • [25] Time-fractional telegraph equation of distributed order in higher dimensions
    Vieira, N.
    Rodrigues, M. M.
    Ferreira, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [26] Nonlocal Telegraph Equation in Frame of the Conformable Time-Fractional Derivative
    Bouaouid, Mohamed
    Hilal, Khalid
    Melliani, Said
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [28] Neural Network Method for Solving Time-Fractional Telegraph Equation
    Ibrahim, Wubshet
    Bijiga, Lelisa Kebena
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [29] A MODIFIED REPRODUCING KERNEL METHOD FOR A TIME-FRACTIONAL TELEGRAPH EQUATION
    Wang, Yulan
    Du, Mingling
    Temuer, Chaolu
    THERMAL SCIENCE, 2017, 21 (04): : 1575 - 1580
  • [30] Fundamental solutions of the fractional two-parameter telegraph equation
    Yakubovich, S.
    Rodrigues, M. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (07) : 509 - 519