First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation with Laplace or Dirac Operators

被引:0
|
作者
M. Ferreira
M. M. Rodrigues
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Time-fractional telegraph equation; Time-fractional telegraph Dirac operator; First and second fundamental solutions; Caputo fractional derivative; Multivariate Mittag-Leffler function; H-function of two variables; Primary 30G35; Secondary 35R11; 26A33; 35A08; 35C15; 33E12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we obtain the first and second fundamental solutions (FS) of the multidimensional time-fractional equation with Laplace or Dirac operators, where the two time-fractional derivatives of orders α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in ]0,1]$$\end{document} and β∈]1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in ]1,2]$$\end{document} are in the Caputo sense. We obtain representations of the FS in terms of Hankel transform, double Mellin-Barnes integrals, and H-functions of two variables. As an application, the FS are used to solve Cauchy problems of Laplace and Dirac type.
引用
收藏
相关论文
共 50 条
  • [1] First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation with Laplace or Dirac Operators
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (02)
  • [2] First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation of Order 2α
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [3] Fundamental solution of the time-fractional telegraph Dirac operator
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7033 - 7050
  • [4] Fractional exponential operators and time-fractional telegraph equation
    Alireza Ansari
    [J]. Boundary Value Problems, 2012
  • [5] Fractional exponential operators and time-fractional telegraph equation
    Ansari, Alireza
    [J]. BOUNDARY VALUE PROBLEMS, 2012,
  • [6] Eigenfunctions and Fundamental Solutions of the Caputo Fractional Laplace and Dirac Operators
    Ferreira, Milton
    Vieira, Nelson
    [J]. MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 191 - 202
  • [7] Invariant Solutions and Conservation Laws of the Time-Fractional Telegraph Equation
    Najafi, Ramin
    Celik, Ercan
    Uyanik, Neslihan
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [8] Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives
    Ferreira, M.
    Vieira, N.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (09) : 1237 - 1253
  • [9] ASYMPTOTIC BEHAVIOUR OF THE TIME-FRACTIONAL TELEGRAPH EQUATION
    Vergara, Vicente
    [J]. JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 890 - 893
  • [10] Analytical Solution for the Time-Fractional Telegraph Equation
    Huang, F.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2009,