A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration

被引:0
|
作者
Fei Xu
Hehu Xie
Manting Xie
Meiling Yue
机构
[1] Beijing University of Technology,Beijing Institute for Scientific and Engineering Computing, Faculty of Science
[2] Chinese Academy of Sciences,LSEC, ICMSEC, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
[4] Tianjin University,Center for Applied Mathematics
[5] Beijing Technology and Business University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2021年 / 61卷
关键词
BEC; GPE; Nonlinear eigenvalue problem; Multigrid method; Finite element method; 65N30; 65N25; 65L15; 65B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new kind of multigrid method is proposed for the ground state solution of Bose–Einstein condensates based on Newton iteration scheme. Instead of treating eigenvalue λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and eigenvector u separately, we regard the eigenpair (λ,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , u)$$\end{document} as one element in the composite space R×H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} \times H_0^1(\varOmega )$$\end{document} and then Newton iteration step is adopted for the nonlinear problem. Thus in this multigrid scheme, the main computation is to solve a linear discrete boundary value problem in every refined space, which can improve the overall efficiency for the simulation of Bose–Einstein condensations.
引用
收藏
页码:645 / 663
页数:18
相关论文
共 50 条
  • [41] The finite element method for computing the ground states of the dipolar Bose-Einstein condensates
    Hua, Dong-Ying
    Li, Xiang-Gui
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 214 - 222
  • [42] ON DISCRETE GROUND STATES OF ROTATING BOSE-EINSTEIN CONDENSATES
    Henning, Patrick
    Yadav, Mahima
    MATHEMATICS OF COMPUTATION, 2025, 94 (351) : 1 - 32
  • [43] Ground states and dynamics of multicomponent Bose-Einstein condensates
    Bao, WZ
    MULTISCALE MODELING & SIMULATION, 2004, 2 (02): : 210 - 236
  • [44] Numerical solution of the EHL problems using coupled multigrid Newton-Raphson iteration method
    Lin, Xiaohui
    Lin, Xiaotong
    Liu, Na
    Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 2000, 17 (03): : 63 - 67
  • [45] A numerical scheme for the ground state of rotating spin-1 Bose-Einstein condensates
    Sriburadet, Sirilak
    Shih, Yin-Tzer
    Jeng, B-W
    Hsueh, C-H
    Chien, C-S
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [46] ENERGY AND CHEMICAL POTENTIAL ASYMPTOTICS FOR THE GROUND STATE OF BOSE-EINSTEIN CONDENSATES IN THE SEMICLASSICAL REGIME
    Bao, Weizhu
    Lim, Fong Yin
    Zhang, Yanzhi
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2007, 2 (02): : 495 - 532
  • [47] TWO-LEVEL DISCRETIZATION TECHNIQUES FOR GROUND STATE COMPUTATIONS OF BOSE-EINSTEIN CONDENSATES
    Henning, Patrick
    Malqvist, Axel
    Peterseim, Daniel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1525 - 1550
  • [48] A numerical study of the ground state and dynamics of atomic-molecular Bose-Einstein condensates
    Jiang, Wei
    Wang, Hanquan
    Li, Xianggui
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (11) : 2396 - 2407
  • [49] Nonequilibrium Bose systems and nonground-state Bose-Einstein condensates
    Yukalov, V. I.
    LASER PHYSICS LETTERS, 2006, 3 (08) : 406 - 414
  • [50] Ground states of Bose-Einstein condensates with higher order interaction
    Bao, Weizhu
    Cai, Yongyong
    Ruan, Xinran
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 386 : 38 - 48