The finite element method for computing the ground states of the dipolar Bose-Einstein condensates

被引:7
|
作者
Hua, Dong-Ying [1 ]
Li, Xiang-Gui [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; Bose-Einstein condensates; Generalized solution; QUANTUM GASES; EQUATION; DYNAMICS;
D O I
10.1016/j.amc.2014.01.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element approximation for computing the ground states of the dipolar Bose-Einstein condensates with a nonlocal nonlinear convolution term is presented in one dimension. Following the idea of the imaginary time method, we compute the ground state finite method solution of the Bose-Einstein condensates by solving a nonlinear parabolic differential-integral equation. Theoretical analysis is given to show the existence and convergence of this finite method solution. Numerical results are given to verify efficiency of our numerical method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 50 条
  • [1] A Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
    Wu, Xinming
    Wen, Zaiwen
    Bao, Weizhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 303 - 329
  • [2] Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates
    Bao, Weizhu
    Cai, Yongyong
    Wang, Hanquan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7874 - 7892
  • [3] Dipolar Bose-Einstein condensates at finite temperature
    Ronen, Shai
    Bohn, John L.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [4] A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates
    Xu, Fei
    Huang, Qiumei
    Wang, Min
    Ma, Hongkun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 385
  • [5] A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates
    Danaila, Ionut
    Hecht, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6946 - 6960
  • [6] Vortices in dipolar Bose-Einstein condensates
    Bland, Thomas
    Lamporesi, Giacomo
    Mark, Manfred J.
    Ferlaino, Francesca
    COMPTES RENDUS PHYSIQUE, 2023, 24
  • [7] Transition states and thermal collapse of dipolar Bose-Einstein condensates
    Junginger, Andrej
    Kreibich, Manuel
    Main, Joerg
    Wunner, Guenter
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [8] A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates
    Xinming Wu
    Zaiwen Wen
    Weizhu Bao
    Journal of Scientific Computing, 2017, 73 : 303 - 329
  • [9] ON DISCRETE GROUND STATES OF ROTATING BOSE-EINSTEIN CONDENSATES
    Henning, Patrick
    Yadav, Mahima
    MATHEMATICS OF COMPUTATION, 2025, 94 (351) : 1 - 32
  • [10] Ground states and dynamics of multicomponent Bose-Einstein condensates
    Bao, WZ
    MULTISCALE MODELING & SIMULATION, 2004, 2 (02): : 210 - 236