The finite element method for computing the ground states of the dipolar Bose-Einstein condensates

被引:7
|
作者
Hua, Dong-Ying [1 ]
Li, Xiang-Gui [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; Bose-Einstein condensates; Generalized solution; QUANTUM GASES; EQUATION; DYNAMICS;
D O I
10.1016/j.amc.2014.01.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element approximation for computing the ground states of the dipolar Bose-Einstein condensates with a nonlocal nonlinear convolution term is presented in one dimension. Following the idea of the imaginary time method, we compute the ground state finite method solution of the Bose-Einstein condensates by solving a nonlinear parabolic differential-integral equation. Theoretical analysis is given to show the existence and convergence of this finite method solution. Numerical results are given to verify efficiency of our numerical method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 50 条
  • [31] Ground states of Bose-Einstein condensates with higher order interaction
    Bao, Weizhu
    Cai, Yongyong
    Ruan, Xinran
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 386 : 38 - 48
  • [32] GROUND STATES OF SPIN-F BOSE-EINSTEIN CONDENSATES
    Tian, Tonghua
    Cai, Yongyong
    Wu, Xinming
    Wen, Zaiwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04): : B983 - B1013
  • [33] A hybrid discontinuous Galerkin method for computing the ground state solution of Bose-Einstein condensates
    Farhat, Charbel
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) : 4709 - 4722
  • [34] Spontaneous circulation in ground-state spinor dipolar Bose-Einstein condensates
    Kawaguchi, Yuki
    Saito, Hiroki
    Ueda, Masahito
    PHYSICAL REVIEW LETTERS, 2006, 97 (13)
  • [35] Ground state of spin-2 dipolar rotating Bose-Einstein condensates
    Zhao, Qiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (10):
  • [36] Structure-preserving finite element methods for computing dynamics of rotating Bose-Einstein condensates
    Li, Meng
    Wang, Junjun
    Guan, Zhen
    Du, Zhijie
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 519 - 552
  • [37] Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow
    Bao, Weizhu
    Lim, Fong Yin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04): : 1925 - 1948
  • [38] Efficient and accurate gradient flow methods for computing ground states of spinor Bose-Einstein condensates
    Cai, Yongyong
    Liu, Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 433
  • [39] A splitting compact finite difference method for computing the dynamics of dipolar Bose-Einstein condensate
    Wang, Hanquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (10) : 2027 - 2040
  • [40] A Multigrid Method for Ground State Solution of Bose-Einstein Condensates
    Xie, Hehu
    Xie, Manting
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (03) : 648 - 662