Lense–Thirring precession and gravito–gyromagnetic ratio

被引:0
|
作者
A. Stepanian
Sh. Khlghatyan
V. G. Gurzadyan
机构
[1] Alikhanyan National Laboratory and Yerevan State University,Center for Cosmology and Astrophysics
[2] SIA,undefined
[3] Sapienza Universita di Roma,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The geodesics of bound spherical orbits i.e. of orbits performing Lense–Thirring precession, are obtained in the case of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document} term within the gravito-electromagnetic formalism. It is shown that the presence of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-term in the equations of gravity leads to both relativistic and non-relativistic corrections in the equations of motion. The contribution of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-term in the Lense–Thirring precession is interpreted as an additional relativistic correction and the gravito–gyromagnetic ratio is defined.
引用
收藏
相关论文
共 50 条
  • [41] Distinguishing signature of Kerr-MOG black hole and superspinar via Lense-Thirring precession
    Pradhan, Parthapratim
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (08):
  • [42] Relativistic canonical planetary perturbation equations for momentum-dependent forces, and the Lense-Thirring precession
    Ashby, Neil
    Allison, Timothy
    NEW TRENDS IN ASTRODYNAMICS AND APPLICATIONS III, 2007, 886 : 253 - +
  • [43] ON DAMPED GYROMAGNETIC PRECESSION
    MALLINSON, JC
    IEEE TRANSACTIONS ON MAGNETICS, 1987, 23 (04) : 2003 - 2004
  • [44] Earth Tides and Lense–Thirring Effect
    Lorenzo Iorio
    Celestial Mechanics and Dynamical Astronomy, 2001, 79 : 201 - 230
  • [45] DYNAMICS OF LENSE-THIRRING EFFECT
    MILTON, KA
    AMERICAN JOURNAL OF PHYSICS, 1974, 42 (10) : 911 - 912
  • [46] Lense-Thirring effect and precession of timelike geodesics in slowly rotating black hole and naked singularity spacetimes
    Bambhaniya, Parth
    Trivedi, Jay Verma
    Dey, Dipanjan
    Joshi, Pankaj S.
    Joshi, Ashok B.
    PHYSICS OF THE DARK UNIVERSE, 2023, 40
  • [47] Disc corona radii and QPO frequencies in black hole binaries: testing Lense- Thirring precession origin
    Kubota, Aya
    Done, Chris
    Tsurumi, Kazuki
    Mizukawa, Ryuki
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (02) : 1668 - 1684
  • [48] Earth tides and Lense-Thirring effect
    Iorio, L
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 79 (03): : 201 - 230
  • [49] Frame dragging and Lense-Thirring effect
    Ciufolini, I
    GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (10) : 2257 - 2270
  • [50] Gravitational waveforms in the lense-thirring approximation
    Majar, Janos
    ASTROPHYSICS OF VARIABLE STARS, 2006, 349 : 289 - 292