Lense–Thirring precession and gravito–gyromagnetic ratio

被引:0
|
作者
A. Stepanian
Sh. Khlghatyan
V. G. Gurzadyan
机构
[1] Alikhanyan National Laboratory and Yerevan State University,Center for Cosmology and Astrophysics
[2] SIA,undefined
[3] Sapienza Universita di Roma,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The geodesics of bound spherical orbits i.e. of orbits performing Lense–Thirring precession, are obtained in the case of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document} term within the gravito-electromagnetic formalism. It is shown that the presence of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-term in the equations of gravity leads to both relativistic and non-relativistic corrections in the equations of motion. The contribution of the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-term in the Lense–Thirring precession is interpreted as an additional relativistic correction and the gravito–gyromagnetic ratio is defined.
引用
收藏
相关论文
共 50 条
  • [31] Quasi-periodic eruptions as Lense-Thirring precession of super-Eddington flows
    Middleton, M.
    Gurpide, A.
    Kwan, T. M.
    Dai, L.
    Arcodia, R.
    Chakraborty, J.
    Dauser, T.
    Fragile, P. C.
    Ingram, A.
    Miniutti, G.
    Pinto, C.
    Kosec, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (02) : 1688 - 1702
  • [32] On the different flavours of Lense-Thirring precession around accreting stellar mass black holes
    Motta, S. E.
    Franchini, A.
    Lodato, G.
    Mastroserio, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (01) : 431 - 439
  • [33] ON THE MEASUREMENT OF THE GYROMAGNETIC RATIO FOR THE FREE ELECTRON - PRECESSION AND DEPOLARIZATION
    CASE, KM
    MENDLOWITZ, H
    PHYSICAL REVIEW, 1953, 91 (02): : 475 - 475
  • [34] CANONICAL PLANETARY PERTURBATION EQUATIONS FOR VELOCITY-DEPENDENT FORCES, AND THE LENSE-THIRRING PRECESSION
    Ashby, Neil
    Allison, Timothy
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 57 (04): : 537 - 585
  • [35] Strong gravity Lense-Thirring precession in Kerr and Kerr-Taub-NUT spacetimes
    Chakraborty, Chandrachur
    Majumdar, Parthasarathi
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (07)
  • [36] Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession
    Ingram, Adam
    Done, Chris
    Fragile, P. Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 397 (01) : L101 - L105
  • [37] Lense-Thirring precession and quasi-periodic oscillations in X-ray binaries
    Markovic, D
    Lamb, FK
    ASTROPHYSICAL JOURNAL, 1998, 507 (01): : 316 - 326
  • [38] Lense-Thirring precession around supermassive black holes during tidal disruption events
    Franchini, Alessia
    Lodato, Giuseppe
    Facchini, Stefano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (02) : 1946 - 1956
  • [39] The Thirring-Lense effect
    Embacher, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 1977 - 1988
  • [40] Lense-Thirring precession in ULXs as a possible means to constrain the neutron star equation of state
    Middleton, M. J.
    Fragile, P. C.
    Bachetti, M.
    Brightman, M.
    Jiang, Y-F.
    Ho, W. C. G.
    Roberts, T. P.
    Ingram, A. R.
    Dauser, T.
    Pinto, C.
    Walton, D. J.
    Fuerst, F.
    Fabian, A. C.
    Gehrels, N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (01) : 154 - 166