Finite Solvable Groups with Few Non-cyclic Subgroups

被引:0
|
作者
Wei Meng
机构
[1] Yunnan Minzu University,School of Mathematics and Computer Science
关键词
Cyclic subgroups; Conjugacy class; Classification; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)$$\end{document} denote the number of conjugate classes of allnon-cyclic subgroups of G. The symbol π(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi (G)$$\end{document} denotes the set of the prime divisors of |G|. In Meng and Li (Sci Sin Math 44:939–944, 2014), it was proved that for a finite non-cyclic solvable group G, one always has δ(G)≥2|π(G)|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\ge 2^{|\pi (G)|-2}$$\end{document}. The groups with δ(G)≤|π(G)|+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\le |\pi (G)|+1$$\end{document} always are solvable and have been complete classified. Moreover, it was showed that a finite non-solvable group G with δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document} is isomorphic to A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_5$$\end{document} or SL(2, 5). In this paper, we investigate the finite solvable groups with δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document}. For convenience, a group G is said to be a δπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \pi _2$$\end{document}-group if δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document}. In particular, we give a completely classification of the δπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \pi _2$$\end{document}-groups with |π(G)|=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\pi (G)|=3,4$$\end{document}.
引用
收藏
页码:1221 / 1226
页数:5
相关论文
共 50 条
  • [22] Groups with few non-normal cyclic subgroups
    Oggionni, Davide
    Ponzoni, Gianluca
    Zambelli, Vittoria
    NOTE DI MATEMATICA, 2010, 30 (02): : 121 - 133
  • [23] Finite non-cyclic nilpotent group whose number of subgroups is minimal
    Meng, Wei
    Lu, Jiakuan
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 191 - 198
  • [24] ON THE SUM OF ORDERS OF NON-CYCLIC AND NON-NORMAL SUBGROUPS IN A FINITE GROUP
    Chen, Haowen
    Zhang, Boru
    Meng, Wei
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 36 : 206 - 214
  • [25] FINITE GROUPS WITH NON-CYCLIC 2-SUBGROUPS WHICH ARE SUBNORMAL OR HAVE SMALL INDICES IN THEIR NORMALIZERS
    Shi, Jiangtao
    Zhang, Cui
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
  • [26] FINITE NON-SOLVABLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS
    BAUMANN, B
    JOURNAL OF ALGEBRA, 1976, 38 (01) : 119 - 135
  • [27] Finite non-cyclic nilpotent group whose number of subgroups is minimal
    Wei Meng
    Jiakuan Lu
    Ricerche di Matematica, 2024, 73 : 191 - 198
  • [28] On finite groups with few non-normal subgroups
    Mousavi, H
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) : 3143 - 3151
  • [29] Finite groups with few non-isolated subgroups
    Tarnauceanu, Marius
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 165 - 170
  • [30] Finite groups with few non-normal subgroups
    Lu, Jiakuan
    Pang, Linna
    Qiu, Yanyan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (04)