Existence of groundstates for Choquard type equations with Hardy–Littlewood–Sobolev critical exponent

被引:0
|
作者
Xiaowei Li
Feizhi Wang
机构
[1] Yantai University,School of Mathematics and Information Sciences
来源
关键词
Choquard equation; Nonlocal critical growth; Pohozǎev–Palais–Smale sequence; Hardy–Littlewood–Sobolev inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of Choquard equations with Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}. We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc. 131:2399–2408, 2003) with a concentration–compactness argument, and then we obtain the existence of ground state solutions, which extends and complements the earlier results.
引用
收藏
相关论文
共 50 条
  • [31] Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent
    Van Schaftingen, Jean
    Xia, Jiankang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1184 - 1202
  • [32] GROUND STATES OF NONLINEAR FRACTIONAL CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL GROWTH
    Jin, Hua
    Liu, Wenbin
    Zhang, Huixing
    Zhang, Jianjun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 123 - 144
  • [33] On Nonlocal Choquard System with Hardy-Littlewood-Sobolev Critical Exponents
    Luo, Xiaorong
    Mao, Anmin
    Mo, Shuai
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
  • [34] Existence results for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity
    Song, Yueqiang
    Zhao, Fu
    Pu, Hongling
    Shi, Shaoyun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [35] Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent
    Su, Yu
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 2063 - 2082
  • [36] EXISTENCE AND MULTIPLICITY RESULTS FOR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT AND HARDY TERM
    Shang Yanying
    Tang Chunlei
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (04): : 289 - 298
  • [37] Radial ground state solutions for Choquard equations with Hardy-Littlewood-Sobolev lower critical growth
    Li, Yong-Yong
    Li, Gui-Dong
    Tang, Chun-Lei
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (11) : 2747 - 2758
  • [38] Existence and multiplicity of solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity
    Song, Yueqiang
    Shi, Shaoyun
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 170 - 175
  • [39] EXISTENCE OF GROUNDSTATES FOR A CLASS OF NONLINEAR CHOQUARD EQUATIONS
    Moroz, Vitaly
    Van Schaftingen, Jean
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6557 - 6579
  • [40] Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group
    Xueqi Sun
    Baoling Yang
    Yueqiang Song
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3439 - 3457