Existence of groundstates for Choquard type equations with Hardy–Littlewood–Sobolev critical exponent

被引:0
|
作者
Xiaowei Li
Feizhi Wang
机构
[1] Yantai University,School of Mathematics and Information Sciences
来源
关键词
Choquard equation; Nonlocal critical growth; Pohozǎev–Palais–Smale sequence; Hardy–Littlewood–Sobolev inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of Choquard equations with Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}. We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc. 131:2399–2408, 2003) with a concentration–compactness argument, and then we obtain the existence of ground state solutions, which extends and complements the earlier results.
引用
收藏
相关论文
共 50 条
  • [21] Solutions for a class of quasilinear Choquard equations with Hardy?Littlewood?Sobolev critical nonlinearity
    Liang, Sihua
    Wen, Lixi
    Zhang, Binlin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [22] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [23] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [24] A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality
    Gao, Fashun
    Yang, Minbo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [25] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [26] A Hardy–Littlewood–Sobolev-Type Inequality for Variable Exponents and Applications to Quasilinear Choquard Equations Involving Variable Exponent
    Claudianor O. Alves
    Leandro S. Tavares
    Mediterranean Journal of Mathematics, 2019, 16
  • [27] A Hardy-Littlewood-Sobolev-Type Inequality for Variable Exponents and Applications to Quasilinear Choquard Equations Involving Variable Exponent
    Alves, Claudianor O.
    Tavares, Leandro S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
  • [28] On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents
    Xiaorong Luo
    Anmin Mao
    Shuai Mo
    The Journal of Geometric Analysis, 2022, 32
  • [29] Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [30] Existence of Solutions to the Elliptic Equations with Critical Sobolev-Hardy Exponent
    Matallah, Atika
    Litimein, Sara
    ICEMIS'18: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ENGINEERING AND MIS, 2018,