Existence of groundstates for Choquard type equations with Hardy–Littlewood–Sobolev critical exponent

被引:0
|
作者
Xiaowei Li
Feizhi Wang
机构
[1] Yantai University,School of Mathematics and Information Sciences
来源
关键词
Choquard equation; Nonlocal critical growth; Pohozǎev–Palais–Smale sequence; Hardy–Littlewood–Sobolev inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of Choquard equations with Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}. We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc. 131:2399–2408, 2003) with a concentration–compactness argument, and then we obtain the existence of ground state solutions, which extends and complements the earlier results.
引用
收藏
相关论文
共 50 条