The norm of polynomials in large random and deterministic matrices

被引:0
|
作者
Camille Male
机构
[1] Unité de Mathématiques pures et appliquées,Ecole Normale Supérieure de Lyon
[2] UMR 5669,undefined
来源
关键词
Random matrix; Free probability; Strong asymptotic; Freeness; *-algebra; 15A52; 46L54;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf X}_N =(X_1^{(N)}, \ldots, X_p^{(N)})}$$\end{document} be a family of N × N independent, normalized random matrices from the Gaussian Unitary Ensemble. We state sufficient conditions on matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf Y}_N =(Y_1^{(N)}, \ldots, Y_q^{(N)})}$$\end{document} , possibly random but independent of XN, for which the operator norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P({\bf X}_N, {\bf Y}_N, {\bf Y}_N^*)}$$\end{document} converges almost surely for all polynomials P. Limits are described by operator norms of objects from free probability theory. Taking advantage of the choice of the matrices YN and of the polynomials P, we get for a large class of matrices the “no eigenvalues outside a neighborhood of the limiting spectrum” phenomena. We give examples of diagonal matrices YN for which the convergence holds. Convergence of the operator norm is shown to hold for block matrices, even with rectangular Gaussian blocks, a situation including non-white Wishart matrices and some matrices encountered in MIMO systems.
引用
收藏
页码:477 / 532
页数:55
相关论文
共 50 条
  • [41] A LIMIT-THEOREM FOR THE NORM OF RANDOM MATRICES
    GEMAN, S
    ANNALS OF PROBABILITY, 1980, 8 (02): : 252 - 261
  • [42] Spectral Properties of Random and Deterministic CMV Matrices
    Stoiciu, M.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 270 - 281
  • [43] NORM ESTIMATES FOR RANDOM POLYNOMIALS ON THE SCALE OF ORLICZ SPACES
    Defant, Andreas
    Mastylo, Mieczyslaw
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 335 - 347
  • [44] Classical Skew Orthogonal Polynomials and Random Matrices
    M. Adler
    P. J. Forrester
    T. Nagao
    P. van Moerbeke
    Journal of Statistical Physics, 2000, 99 : 141 - 170
  • [45] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Fabio Deelan Cunden
    Francesco Mezzadri
    Neil O’Connell
    Nick Simm
    Communications in Mathematical Physics, 2019, 369 : 1091 - 1145
  • [46] Characteristic Polynomials¶of Real Symmetric Random Matrices
    E. Brézin
    S. Hikami
    Communications in Mathematical Physics, 2001, 223 : 363 - 382
  • [47] Characteristic polynomials of real symmetric random matrices
    Brézin, E
    Hikami, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) : 363 - 382
  • [48] Logarithmic moments of characteristic polynomials of random matrices
    Brézin, E
    Hikami, S
    PHYSICA A, 2000, 279 (1-4): : 333 - 341
  • [49] On the moments of moments of random matrices and Ehrhart polynomials
    Assiotis, Theodoros
    Eriksson, Edward
    Ni, Wenqi
    ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [50] Random matrices, nonbacktracking walks, and orthogonal polynomials
    Sodin, Sasha
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)