Moments of Random Matrices and Hypergeometric Orthogonal Polynomials

被引:0
|
作者
Fabio Deelan Cunden
Francesco Mezzadri
Neil O’Connell
Nick Simm
机构
[1] University College Dublin,School of Mathematics and Statistics
[2] University of Bristol,School of Mathematics
[3] University of Sussex,Mathematics Department
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We establish a new connection between moments of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} random matrices Xn and hypergeometric orthogonal polynomials. Specifically, we consider moments ETrXn-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{E}{\rm Tr} X_n^{-s}}$$\end{document} as a function of the complex variable s∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \in \mathbb{C}}$$\end{document} , whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and orthogonality relations. An application of the theory resolves part of an integrality conjecture of Cunden et al. (J Math Phys 57:111901, 2016) on the time-delay matrix of chaotic cavities. In each of the classical ensembles of random matrix theory (Gaussian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of hypergeometric orthogonal polynomials. We also calculate the leading order n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \rightarrow \infty}$$\end{document} asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects of these phenomena beyond the random matrix setting, including the Mellin transform of products and Wronskians of pairs of classical orthogonal polynomials. When the random matrix model has orthogonal or symplectic symmetry, we obtain a new duality formula relating their moments to hypergeometric orthogonal polynomials.
引用
收藏
页码:1091 / 1145
页数:54
相关论文
共 50 条
  • [1] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Cunden, Fabio Deelan
    Mezzadri, Francesco
    O'Connell, Neil
    Simm, Nick
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1091 - 1145
  • [2] Moments of moments of the characteristic polynomials of random orthogonal and symplectic matrices
    Claeys, Tom
    Forkel, Johannes
    Keating, Jonathan P.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2270):
  • [3] Joint moments of derivatives of characteristic polynomials of random symplectic and orthogonal matrices
    Andrade, Julio C.
    Best, Christopher G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (20)
  • [4] On the moments of moments of random matrices and Ehrhart polynomials
    Assiotis, Theodoros
    Eriksson, Edward
    Ni, Wenqi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [5] Orthogonal polynomials, Jacobi matrices and random matrices
    Pastur, L.
    [J]. INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 249 - 263
  • [6] Orthogonal polynomials and fluctuations of random matrices
    Kusalik, Timothy
    Mingo, James A.
    Speicher, Roland
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 604 : 1 - 46
  • [7] On the Moments of the Moments of the Characteristic Polynomials of Random Unitary Matrices
    E. C. Bailey
    J. P. Keating
    [J]. Communications in Mathematical Physics, 2019, 371 : 689 - 726
  • [8] On the Moments of the Moments of the Characteristic Polynomials of Random Unitary Matrices
    Bailey, E. C.
    Keating, J. P.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (02) : 689 - 726
  • [9] Logarithmic moments of characteristic polynomials of random matrices
    Brézin, E
    Hikami, S
    [J]. PHYSICA A, 2000, 279 (1-4): : 333 - 341
  • [10] On the moments of the moments of the characteristic polynomials of Haar distributed symplectic and orthogonal matrices
    Assiotis, Theodoros
    Bailey, Emma C.
    Keating, Jonathan P.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (03): : 567 - 604