Experimental realization of non-Abelian non-adiabatic geometric gates

被引:0
|
作者
A. A. Abdumalikov Jr
J. M. Fink
K. Juliusson
M. Pechal
S. Berger
A. Wallraff
S. Filipp
机构
[1] Department of Physics,
[2] Present addresses: Institute for Quantum Information and Matter,undefined
[3] California Institute of Technology,undefined
[4] Pasadena,undefined
[5] California 91125,undefined
[6] USA (J.M.F.); Quantronics Group,undefined
[7] Service de Physique de l’Etat Condensé (CNRS,undefined
[8] URA 2464),undefined
[9] IRAMIS,undefined
[10] CEA-Saclay,undefined
[11] 91191 Gif-sur-Yvette,undefined
[12] France (K.J.).,undefined
来源
Nature | 2013年 / 496卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Microwave stimulation of a superconducting artificial three-level atom is used to demonstrate high-fidelity, non-Abelian geometric transformations, the results of which depend on the order in which they are performed.
引用
收藏
页码:482 / 485
页数:3
相关论文
共 50 条
  • [31] Spatial non-adiabatic passage using geometric phases
    Benseny, Albert
    Kiely, Anthony
    Zhang, Yongping
    Busch, Thomas
    Ruschhaupt, Andreas
    EPJ QUANTUM TECHNOLOGY, 2017, 4
  • [32] Non-adiabatic geometric phase in a dispersive interaction system
    Liu Ji-Bing
    Li Jia-Hua
    Lue Xin-You
    Zheng An-Shou
    CHINESE PHYSICS LETTERS, 2007, 24 (05) : 1136 - 1139
  • [33] Non-adiabatic geometric phase in a dispersive interaction system
    Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Chin. Phys. Lett., 2007, 5 (1136-1139):
  • [34] Spatial non-adiabatic passage using geometric phases
    Albert Benseny
    Anthony Kiely
    Yongping Zhang
    Thomas Busch
    Andreas Ruschhaupt
    EPJ Quantum Technology, 4
  • [35] Observation of a non-adiabatic geometric phase for elastic waves
    Boulanger, Jeremie
    Le Bihan, Nicolas
    Catheline, Stefan
    Rossetto, Vincent
    ANNALS OF PHYSICS, 2012, 327 (03) : 952 - 958
  • [36] Geometric phase and non-adiabatic resonance of the Rabi model
    Liu, Sijiang
    Lu, Zhiguo
    Zheng, Hang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (44)
  • [37] Consistency between adiabatic and non-adiabatic geometric phases for non-self-adjoint Hamiltonians
    Viennot, David
    Leclerc, Arnaud
    Jolicard, Georges
    Killingbeck, John P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (33)
  • [38] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [39] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    Cruz-Filho, J. S.
    Amorim, R. G. G.
    Khanna, F. C.
    Santana, A. E.
    Santos, A. F.
    Ulhoa, S. C.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3203 - 3224
  • [40] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747