Singular riemannian foliations with sections, transnormal maps and basic forms

被引:0
|
作者
Marcos M. Alexandrino
Claudio Gorodski
机构
[1] Universidade de São Paulo (USP),Instituto de Matemática e Estatística
来源
关键词
Singular riemannian foliations; Basic forms; Basic functions; Pseudogroups; Equifocal submanifolds; Polar actions; Isoparametric submanifolds; Primary 53C12; Secondary 57R30;
D O I
暂无
中图分类号
学科分类号
摘要
A singular riemannian foliation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} on a complete riemannian manifold M is said to admit sections if each regular point of M is contained in a complete totally geodesic immersed submanifold Σ that meets every leaf of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} orthogonally and whose dimension is the codimension of the regular leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document}. We prove that the algebra of basic forms of M relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} is isomorphic to the algebra of those differential forms on Σ that are invariant under the generalized Weyl pseudogroup of Σ. This extends a result of Michor for polar actions. It follows from this result that the algebra of basic function is finitely generated if the sections are compact. We also prove that the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} coincide with the level sets of a transnormal map (generalization of isoparametric map) if M is simply connected, the sections are flat and the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} are compact. This result extends previous results due to Carter and West, Terng, and Heintze, Liu and Olmos.
引用
收藏
页码:209 / 223
页数:14
相关论文
共 50 条
  • [31] Singular Riemannian foliations on nonpositively curved manifolds
    Toeben, Dirk
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (02) : 427 - 436
  • [32] Yamabe problem in the presence of singular Riemannian Foliations
    Corro, Diego
    Carlos Fernandez, Juan
    Perales, Raquel
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
  • [33] Mean Curvature Flow of Singular Riemannian Foliations
    Alexandrino, Marcos M.
    Radeschi, Marco
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 2204 - 2220
  • [34] Yamabe problem in the presence of singular Riemannian Foliations
    Diego Corro
    Juan Carlos Fernandez
    Raquel Perales
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [35] Proofs of conjectures about singular Riemannian foliations
    Alexandrino, Marcos M.
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 219 - 234
  • [36] A SLICE THEOREM FOR SINGULAR RIEMANNIAN FOLIATIONS, WITH APPLICATIONS
    Mendes, Ricardo A. E.
    Radeschi, Marco
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 4931 - 4949
  • [37] Algebraic nature of singular Riemannian foliations in spheres
    Lytchak, Alexander
    Radeschi, Marco
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 744 : 265 - 273
  • [38] Singular Riemannian foliations on nonpositively curved manifolds
    Dirk Töben
    Mathematische Zeitschrift, 2007, 255 : 427 - 436
  • [39] Singular Riemannian foliations on simply connected spaces
    Alexandrino, Marcos M.
    Toeben, Dirk
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (04) : 383 - 397
  • [40] Riemannian foliations and the kernel of the basic Dirac operator
    Slesar, Vladimir
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (02): : 145 - 158