Singular riemannian foliations with sections, transnormal maps and basic forms

被引:0
|
作者
Marcos M. Alexandrino
Claudio Gorodski
机构
[1] Universidade de São Paulo (USP),Instituto de Matemática e Estatística
来源
关键词
Singular riemannian foliations; Basic forms; Basic functions; Pseudogroups; Equifocal submanifolds; Polar actions; Isoparametric submanifolds; Primary 53C12; Secondary 57R30;
D O I
暂无
中图分类号
学科分类号
摘要
A singular riemannian foliation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} on a complete riemannian manifold M is said to admit sections if each regular point of M is contained in a complete totally geodesic immersed submanifold Σ that meets every leaf of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} orthogonally and whose dimension is the codimension of the regular leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document}. We prove that the algebra of basic forms of M relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} is isomorphic to the algebra of those differential forms on Σ that are invariant under the generalized Weyl pseudogroup of Σ. This extends a result of Michor for polar actions. It follows from this result that the algebra of basic function is finitely generated if the sections are compact. We also prove that the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} coincide with the level sets of a transnormal map (generalization of isoparametric map) if M is simply connected, the sections are flat and the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} are compact. This result extends previous results due to Carter and West, Terng, and Heintze, Liu and Olmos.
引用
收藏
页码:209 / 223
页数:14
相关论文
共 50 条
  • [21] Geometric resolution of singular Riemannian foliations
    Lytchak, Alexander
    GEOMETRIAE DEDICATA, 2010, 149 (01) : 379 - 395
  • [22] BASIC COHOMOLOGY AND DUALITY OF RIEMANNIAN FOLIATIONS
    SERGIESCU, V
    ANNALES DE L INSTITUT FOURIER, 1985, 35 (03) : 137 - 158
  • [23] Equivariant basic cohomology of Riemannian foliations
    Goerisches, Oliver
    Toben, Dirk
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 745 : 1 - 40
  • [24] Correction to: Cohomological tautness of singular Riemannian foliations
    José Ignacio Royo Prieto
    Martintxo Saralegi-Aranguren
    Robert Wolak
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 4287 - 4288
  • [25] Proofs of Conjectures about Singular Riemannian Foliations
    Marcos M. Alexandrino
    Geometriae Dedicata, 2006, 119 : 219 - 234
  • [26] Mean Curvature Flow of Singular Riemannian Foliations
    Marcos M. Alexandrino
    Marco Radeschi
    The Journal of Geometric Analysis, 2016, 26 : 2204 - 2220
  • [27] The dual foliation of some singular Riemannian foliations
    Shi, Yi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 51 : 9 - 14
  • [28] SLICE THEOREMS AND HOLONOMY OF SINGULAR RIEMANNIAN FOLIATIONS
    MOLINO, P
    PIERROT, M
    ANNALES DE L INSTITUT FOURIER, 1987, 37 (04) : 207 - 223
  • [29] Parallel focal structure and singular Riemannian foliations
    Töben, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) : 1677 - 1704
  • [30] SATURATED LOCAL MODELS OF SINGULAR RIEMANNIAN FOLIATIONS
    BOUALEM, H
    MOLINO, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (09): : 913 - 916