Towards Asymptotic Completeness of Two-Particle Scattering in Local Relativistic QFT

被引:0
|
作者
Wojciech Dybalski
Christian Gérard
机构
[1] Technische Universität München,Zentrum Mathematik
[2] Université de Paris XI,Département de Mathématiques
来源
Communications in Mathematical Physics | 2014年 / 326卷
关键词
Small Neighbourhood; Positive Energy; Asymptotic Completeness; Disjoint Support; Asymptotic Observable;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} be two energy-momentum vectors of a massive particle and let Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} be a small neighbourhood of p~1+p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1 + \tilde{p}_2}$$\end{document} . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . The result holds under very general conditions which are satisfied, for example, in λϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda{\phi}_{2}^{4}}$$\end{document} . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.
引用
收藏
页码:81 / 109
页数:28
相关论文
共 50 条
  • [41] Local-realism violations in two-particle interferometry
    Wu, Xiao-hua
    Xie, Rui-hua
    Huang, Xiao-dong
    Hsia, Yuan-fu
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 53 (04):
  • [42] Solution of Relativistic Two-Particle Equations with Arbitrary Orbital Angular Momentum
    V. N. Kapshai
    S. I. Fialka
    Russian Physics Journal, 2017, 60 : 37 - 49
  • [43] Solution of Relativistic Two-Particle Equations with Arbitrary Orbital Angular Momentum
    Kapshai, V. N.
    Fialka, S. I.
    RUSSIAN PHYSICS JOURNAL, 2017, 60 (01) : 37 - 49
  • [44] Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
    J. I. Abdullaev
    B. U. Mamirov
    Theoretical and Mathematical Physics, 2013, 176 : 1184 - 1193
  • [45] Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
    S. N. Lakaev
    A. M. Khalkhuzhaev
    Sh. S. Lakaev
    Theoretical and Mathematical Physics, 2012, 171 : 800 - 811
  • [46] Nonperturbative formulation of relativistic two-particle states in the scalar Yukawa model
    Darewych, JW
    Shapoval, DV
    Simenog, IV
    Sitenko, AG
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) : 3908 - 3924
  • [47] FACTORIZED FORMULA FOR THE CROSS-SECTION OF TWO-PARTICLE SCATTERING
    Kuksa, V. I.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (27-28): : 4509 - 4516
  • [48] ASYMPTOTIC COMPLETENESS IN 2-PARTICLE AND 3-PARTICLE QUANTUM-MECHANICAL SCATTERING
    THOMAS, LE
    ANNALS OF PHYSICS, 1975, 90 (01) : 127 - 165
  • [49] Feshbach-type resonances for two-particle scattering in graphene
    Gaul, C.
    Dominguez-Adame, F.
    Sols, F.
    Zapata, I.
    PHYSICAL REVIEW B, 2014, 89 (04):
  • [50] The R-matrix formalism for two-particle scattering problems
    Anghel, Dragos-Victor
    Preda, Amanda Teodora
    Nemnes, George Alexandru
    PHYSICS LETTERS A, 2022, 425