Towards Asymptotic Completeness of Two-Particle Scattering in Local Relativistic QFT

被引:0
|
作者
Wojciech Dybalski
Christian Gérard
机构
[1] Technische Universität München,Zentrum Mathematik
[2] Université de Paris XI,Département de Mathématiques
来源
Communications in Mathematical Physics | 2014年 / 326卷
关键词
Small Neighbourhood; Positive Energy; Asymptotic Completeness; Disjoint Support; Asymptotic Observable;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} be two energy-momentum vectors of a massive particle and let Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} be a small neighbourhood of p~1+p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1 + \tilde{p}_2}$$\end{document} . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . The result holds under very general conditions which are satisfied, for example, in λϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda{\phi}_{2}^{4}}$$\end{document} . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.
引用
收藏
页码:81 / 109
页数:28
相关论文
共 50 条
  • [21] Correlated two-particle scattering on finite cavities
    Morawetz, K
    Schreiber, M
    Schmidt, B
    Ficker, A
    Lipavsky, P
    PHYSICAL REVIEW B, 2005, 72 (01)
  • [22] Local electronic correlation at the two-particle level
    Rohringer, G.
    Valli, A.
    Toschi, A.
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [23] Completeness of the description of an equilibrium canonical ensemble by a two-particle partition function
    Kalinin, MI
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (01) : 1474 - 1482
  • [24] Completeness of the Description of an Equilibrium Canonical Ensemble by a Two-Particle Partition Function
    M. I. Kalinin
    Theoretical and Mathematical Physics, 2005, 145 : 1474 - 1482
  • [25] Relativistic effects in two-particle emission for electron and neutrino reactions
    Ruiz Simo, I.
    Albertus, C.
    Amaro, J. E.
    Barbaro, M. B.
    Caballero, J. A.
    Donnelly, T. W.
    PHYSICAL REVIEW D, 2014, 90 (03):
  • [26] Two-particle scattering matrix of two interacting mesoscopic conductors
    Goorden, M. C.
    Buettiker, M.
    PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [27] Effect of relativistic spin rotation on two-particle spin composition
    Lednicky, R
    Lyuboshitz, VL
    Lyuboshitz, VV
    PHYSICS OF PARTICLES AND NUCLEI, 2004, 35 : S50 - S53
  • [28] Complementary two-particle correlation observables for relativistic nuclear collisions
    Cody, Mary
    Gavin, Sean
    Koch, Brendan
    Kocherovsky, Mark
    Mazloum, Zoulfekar
    Moschelli, George
    PHYSICAL REVIEW C, 2023, 107 (01)
  • [29] Two-particle correlations in relativistic heavy-ion collisions
    Heinz, U
    Jacak, BV
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1999, 49 : 529 - 579
  • [30] ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF THE TWO-PARTICLE DISCRETE SCHRODINGER OPERATOR
    Abdullaev, J. I.
    Mamirov, B. U.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 176 (03) : 1184 - 1193