Towards Asymptotic Completeness of Two-Particle Scattering in Local Relativistic QFT

被引:0
|
作者
Wojciech Dybalski
Christian Gérard
机构
[1] Technische Universität München,Zentrum Mathematik
[2] Université de Paris XI,Département de Mathématiques
来源
关键词
Small Neighbourhood; Positive Energy; Asymptotic Completeness; Disjoint Support; Asymptotic Observable;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} be two energy-momentum vectors of a massive particle and let Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} be a small neighbourhood of p~1+p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1 + \tilde{p}_2}$$\end{document} . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of p~1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_1}$$\end{document} and p~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{p}_2}$$\end{document} . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} . The result holds under very general conditions which are satisfied, for example, in λϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda{\phi}_{2}^{4}}$$\end{document} . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.
引用
收藏
页码:81 / 109
页数:28
相关论文
共 50 条
  • [1] Towards Asymptotic Completeness of Two-Particle Scattering in Local Relativistic QFT
    Dybalski, Wojciech
    Gerard, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 81 - 109
  • [2] A Criterion for Asymptotic Completeness in Local Relativistic QFT
    Wojciech Dybalski
    Christian Gérard
    Communications in Mathematical Physics, 2014, 332 : 1167 - 1202
  • [3] A Criterion for Asymptotic Completeness in Local Relativistic QFT
    Dybalski, Wojciech
    Gerard, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 1167 - 1202
  • [4] LOCAL TWO-PARTICLE QUASIPOTENTIAL IN THE RELATIVISTIC THREE-BODY PROBLEM
    Kvinikhidze, A. N.
    Stoyanov, D. Ts
    THEORETICAL AND MATHEMATICAL PHYSICS, 1973, 16 (01) : 658 - 664
  • [5] ASYMPTOTIC COMPLETENESS IN THE PROBLEM OF SCATTERING BY A BROWNIAN PARTICLE
    CHEREMSHANTSEV, SE
    MATHEMATICS OF THE USSR-SBORNIK, 1988, 137 (3-4): : 531 - 559
  • [6] Relativistic two-particle one-dimensional scattering problem for superposition of δ-potentials
    Kapshai, VN
    Alferova, TA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28): : 5329 - 5342
  • [7] Relativistic effects in bound two-particle systems
    Verschl, M
    Mattes, M
    Sorg, M
    EUROPEAN PHYSICAL JOURNAL A, 2004, 20 (02): : 211 - 231
  • [8] On relativistic mass spectra of a two-particle system
    Tretyak V.
    Shpytko V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 161 - 167
  • [9] Time dilation in relativistic two-particle interactions
    Shields, B. T.
    Morris, M. C.
    Ware, M. R.
    Su, Q.
    Stefanovich, E. V.
    Grobe, R.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [10] Two-particle systems in relativistic Schrodinger theory
    Mattes, M
    Sorg, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25): : 4761 - 4786