On the fast computation of the Dirichlet-multinomial log-likelihood function

被引:0
|
作者
Alessandro Languasco
Mauro Migliardi
机构
[1] Università di Padova,Dipartimento di Matematica,“Tullio Levi
[2] Università di Padova,Civita”
来源
Computational Statistics | 2023年 / 38卷
关键词
Dirichlet multinomial distribution; Log-likelihood; Euler’s Gamma;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new algorithm to compute the difference between values of the logΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \Gamma$$\end{document}-function in close points, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} denotes Euler’s gamma function. As a consequence, we obtain a way of computing the Dirichlet-multinomial log-likelihood function which is more accurate, has a better computational complexity and a wider range of application than the previously known ones.
引用
收藏
页码:1995 / 2013
页数:18
相关论文
共 50 条
  • [21] Modeling Information Content Via Dirichlet-Multinomial Regression Analysis
    Ferrari, Alberto
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (02) : 259 - 270
  • [22] Batch effects correction for microbiome data with Dirichlet-multinomial regression
    Dai, Zhenwei
    Wong, Sunny H.
    Yu, Jun
    Wei, Yingying
    [J]. BIOINFORMATICS, 2019, 35 (05) : 807 - 814
  • [23] A log-likelihood function-based algorithm for QAM signal classification
    Yang, YP
    Liu, CH
    Soong, TW
    [J]. SIGNAL PROCESSING, 1998, 70 (01) : 61 - 71
  • [24] Variational Bayesian dirichlet-multinomial allocation for exponential family mixtures
    Yu, Shipeng
    Yu, Kai
    Tresp, Volker
    Kriegel, Hans-Peter
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 841 - 848
  • [25] A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions
    Gao, Xiang
    Lin, Huaiying
    Dong, Qunfeng
    [J]. MSPHERE, 2017, 2 (06)
  • [26] Deep Log-Likelihood Ratio Quantization
    Arvinte, Marius
    Tewfik, Ahmed H.
    Vishwanath, Sriram
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [27] SOME PROPERTIES OF THE LOG-LIKELIHOOD RATIO
    LEE, CC
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1982, 313 (05): : 273 - 285
  • [28] A generalization of the log-likelihood function and weighted average in Gauss' law of error
    Wada, Tatsuaki
    Suyari, Hiroki
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 1311 - +
  • [29] A note on bimodality in the log-likelihood function for penalized spline mixed models
    Welham, S. J.
    Thompson, R.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 920 - 931
  • [30] ASYMPTOTIC-DISTRIBUTION OF THE LOG-LIKELIHOOD FUNCTION FOR STOCHASTIC-PROCESSES
    ROUSSAS, GG
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (01): : 31 - 46