Modeling Information Content Via Dirichlet-Multinomial Regression Analysis

被引:0
|
作者
Ferrari, Alberto [1 ]
机构
[1] Univ Pavia, Dept Brain & Behav Sci, Via Bassi 21, I-27100 Pavia, Italy
关键词
Dirichlet distribution; Dirichlet-multinomial regression; entropy; information; PROBABILITY-DISTRIBUTIONS; ENTROPY; MOUSE;
D O I
10.1080/00273171.2017.1279957
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 50 条
  • [1] Tracking the evolution of literary style via Dirichlet-multinomial change point regression
    Ross, Gordon J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, : 149 - 167
  • [2] Fisher information matrix of the Dirichlet-multinomial distribution
    Paul, SR
    Balasooriya, U
    Banerjee, T
    [J]. BIOMETRICAL JOURNAL, 2005, 47 (02) : 230 - 236
  • [3] Tracking the evolution of literary style via Dirichlet-multinomial change point regression
    Ross, Gordon J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 149 - 167
  • [4] VARIABLE SELECTION FOR SPARSE DIRICHLET-MULTINOMIAL REGRESSION WITH AN APPLICATION TO MICROBIOME DATA ANALYSIS
    Chen, Jun
    Li, Hongzhe
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01): : 418 - 442
  • [5] Cluster analysis of microbiome data by using mixtures of Dirichlet-multinomial regression models
    Subedi, Sanjeena
    Neish, Drew
    Bak, Stephen
    Feng, Zeny
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (05) : 1163 - 1187
  • [6] Batch effects correction for microbiome data with Dirichlet-multinomial regression
    Dai, Zhenwei
    Wong, Sunny H.
    Yu, Jun
    Wei, Yingying
    [J]. BIOINFORMATICS, 2019, 35 (05) : 807 - 814
  • [7] An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    Wadsworth, W. Duncan
    Argiento, Raffaele
    Guindani, Michele
    Galloway-Pena, Jessica
    Shelburne, Samuel A.
    Vannucci, Marina
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [8] An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    W. Duncan Wadsworth
    Raffaele Argiento
    Michele Guindani
    Jessica Galloway-Pena
    Samuel A. Shelburne
    Marina Vannucci
    [J]. BMC Bioinformatics, 18
  • [9] Erratum to: An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    W. Duncan Wadsworth
    Raffaele Argiento
    Michele Guindani
    Jessica Galloway-Pena
    Samuel A. Shelburne
    Marina Vannucci
    [J]. BMC Bioinformatics, 18
  • [10] SUBJECT-SPECIFIC DIRICHLET-MULTINOMIAL REGRESSION FOR MULTI-DISTRICT MICROBIOTA DATA ANALYSIS
    Pedone, Matteo
    Amedei, Amedeo
    Stingo, Francesco C.
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (01): : 539 - 559