Constant symplectic 2-groupoids

被引:0
|
作者
Rajan Amit Mehta
Xiang Tang
机构
[1] Smith College,Department of Mathematics and Statistics
[2] Washington University in Saint Louis,Department of Mathematics
来源
关键词
Dirac; Symplectic; 2-Groupoids; Courant algebroids; 53D17; 58H05;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a definition of symplectic 2-groupoid which includes integrations of Courant algebroids that have been recently constructed. We study in detail the simple but illustrative case of constant symplectic 2-groupoids. We show that the constant symplectic 2-groupoids are, up to equivalence, in one-to-one correspondence with a simple class of Courant algebroids that we call constant Courant algebroids. Furthermore, we find a correspondence between certain Dirac structures and Lagrangian sub-2-groupoids.
引用
收藏
页码:1203 / 1223
页数:20
相关论文
共 50 条
  • [21] Flux homomorphism on symplectic groupoids
    Ping Xu
    [J]. Mathematische Zeitschrift, 1997, 226 : 575 - 597
  • [22] Flux homomorphism on symplectic groupoids
    Xu, P
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (04) : 575 - 597
  • [23] Symplectic groupoids for Poisson integrators
    Cosserat, Oscar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [24] Poisson sigma models and symplectic groupoids
    Cattaneo, AS
    Felder, G
    [J]. QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS, 2001, 198 : 61 - 93
  • [25] Poisson fibrations and fibered symplectic groupoids
    Brahic, Olivier
    Fernandes, Rui Loja
    [J]. POISSON GEOMETRY IN MATHEMATICS AND PHYSICS, 2008, 450 : 41 - 59
  • [26] DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS
    JIANG-HUA LU
    VICTOR MOUQUIN
    [J]. Transformation Groups, 2018, 23 : 765 - 800
  • [27] SYMPLECTIC GROUPOIDS OF REDUCED POISSON SPACES
    XU, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 457 - 461
  • [28] DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS
    Lu, Jiang-Hua
    Mouquin, Victor
    [J]. TRANSFORMATION GROUPS, 2018, 23 (03) : 765 - 800
  • [29] Symplectic groupoids and generalized almost subtangent manifolds
    Sahin, Fulya
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 156 - 167
  • [30] Tangential deformation quantization and polarized symplectic groupoids
    Weinstein, A
    [J]. DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 301 - 314