DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS

被引:7
|
作者
Lu, Jiang-Hua [1 ]
Mouquin, Victor [2 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
关键词
POISSON HOMOGENEOUS SPACES; CLUSTER ALGEBRAS; LIE BIALGEBROIDS; MANIFOLDS;
D O I
10.1007/s00031-017-9437-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected complex semisimple Lie group, equipped with a standard multiplicative Poisson structure pi (st) determined by a pair of opposite Borel subgroups (B, B_). We prove that for each upsilon in the Weyl group W of G, the double Bruhat cell G (upsilon,upsilon) = B upsilon B Omega B_upsilon B_ in G, together with the Poisson structure pi (st), is naturally a Poisson groupoid over the Bruhat cell B upsilon B/B in the flag variety G/B. Correspondingly, every symplectic leaf of pi (st) in G (upsilon,upsilon) is a symplectic groupoid over B upsilon B/B. For u, upsilon I mu W, we show that the double Bruhat cell (G (u,upsilon) , pi (st)) has a naturally defined left Poisson action by the Poisson groupoid (G (u,upsilon) , pi (st)) and a right Poisson action by the Poisson groupoid (G (u,upsilon) , pi (st)), and the two actions commute. Restricting to symplectic leaves of pi (st), one obtains commuting left and right Poisson actions on symplectic leaves in G (u,upsilon) by symplectic leaves in G (u,u) and G (upsilon,upsilon) as symplectic groupoids.
引用
收藏
页码:765 / 800
页数:36
相关论文
共 50 条