DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS

被引:7
|
作者
Lu, Jiang-Hua [1 ]
Mouquin, Victor [2 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
关键词
POISSON HOMOGENEOUS SPACES; CLUSTER ALGEBRAS; LIE BIALGEBROIDS; MANIFOLDS;
D O I
10.1007/s00031-017-9437-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected complex semisimple Lie group, equipped with a standard multiplicative Poisson structure pi (st) determined by a pair of opposite Borel subgroups (B, B_). We prove that for each upsilon in the Weyl group W of G, the double Bruhat cell G (upsilon,upsilon) = B upsilon B Omega B_upsilon B_ in G, together with the Poisson structure pi (st), is naturally a Poisson groupoid over the Bruhat cell B upsilon B/B in the flag variety G/B. Correspondingly, every symplectic leaf of pi (st) in G (upsilon,upsilon) is a symplectic groupoid over B upsilon B/B. For u, upsilon I mu W, we show that the double Bruhat cell (G (u,upsilon) , pi (st)) has a naturally defined left Poisson action by the Poisson groupoid (G (u,upsilon) , pi (st)) and a right Poisson action by the Poisson groupoid (G (u,upsilon) , pi (st)), and the two actions commute. Restricting to symplectic leaves of pi (st), one obtains commuting left and right Poisson actions on symplectic leaves in G (u,upsilon) by symplectic leaves in G (u,u) and G (upsilon,upsilon) as symplectic groupoids.
引用
收藏
页码:765 / 800
页数:36
相关论文
共 50 条
  • [21] Connected components of real double Bruhat cells
    Zelevinsky, A
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (21) : 1131 - 1154
  • [22] Poisson sigma models and symplectic groupoids
    Cattaneo, AS
    Felder, G
    [J]. QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS, 2001, 198 : 61 - 93
  • [23] Poisson fibrations and fibered symplectic groupoids
    Brahic, Olivier
    Fernandes, Rui Loja
    [J]. POISSON GEOMETRY IN MATHEMATICS AND PHYSICS, 2008, 450 : 41 - 59
  • [24] SYMPLECTIC GROUPOIDS OF REDUCED POISSON SPACES
    XU, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 457 - 461
  • [25] Constant symplectic 2-groupoids
    Rajan Amit Mehta
    Xiang Tang
    [J]. Letters in Mathematical Physics, 2018, 108 : 1203 - 1223
  • [26] Constant symplectic 2-groupoids
    Mehta, Rajan Amit
    Tang, Xiang
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (05) : 1203 - 1223
  • [27] Bruhat order and nil-Hecke algebras for Weyl groupoids
    Angiono, Ivan
    Yamane, Hiroyuki
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)
  • [28] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [29] Symplectic groupoids and generalized almost subtangent manifolds
    Sahin, Fulya
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 156 - 167
  • [30] Double Bruhat Cells in Kac–Moody Groups and Integrable Systems
    Harold Williams
    [J]. Letters in Mathematical Physics, 2013, 103 : 389 - 419