In this paper, we prove a Gauss-Bonnet theorem for the higher algebraic K-theory of smooth complex algebraic varieties. To each exact n-cube of hermitian vector bundles, we associate a higher Bott-Chen form, generalizing the Bott-Chern forms associated to exact sequences. These forms allow us to define characteristic classes from K-theory to absolute Hodge cohomology. Then we prove that these characteristic classes agree with Beilinson's regulator map.