Higher Bott-Chern forms and Beilinson's regulator

被引:0
|
作者
Jose Ignacio Burgos
Steve Wang
机构
[1] Departament D'Àlgebra i Geometria. Universitat de Barcelona,
[2] Gran Via 585,undefined
[3] E-08007 Barcelona,undefined
[4] Spain (e-mail burgos@cerber.mat.ub.es),undefined
[5] 700 E. Henry Clay,undefined
[6] Apt. 7 Milwaukee,undefined
[7] WI 53217,undefined
[8] USA,undefined
来源
Inventiones mathematicae | 1998年 / 132卷
关键词
Exact Sequence; Vector Bundle; Algebraic Variety; Characteristic Classis; Smooth Complex;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Gauss-Bonnet theorem for the higher algebraic K-theory of smooth complex algebraic varieties. To each exact n-cube of hermitian vector bundles, we associate a higher Bott-Chen form, generalizing the Bott-Chern forms associated to exact sequences. These forms allow us to define characteristic classes from K-theory to absolute Hodge cohomology. Then we prove that these characteristic classes agree with Beilinson's regulator map.
引用
收藏
页码:261 / 305
页数:44
相关论文
共 50 条