Higher Bott-Chern forms and Beilinson's regulator

被引:0
|
作者
Jose Ignacio Burgos
Steve Wang
机构
[1] Departament D'Àlgebra i Geometria. Universitat de Barcelona,
[2] Gran Via 585,undefined
[3] E-08007 Barcelona,undefined
[4] Spain (e-mail burgos@cerber.mat.ub.es),undefined
[5] 700 E. Henry Clay,undefined
[6] Apt. 7 Milwaukee,undefined
[7] WI 53217,undefined
[8] USA,undefined
来源
Inventiones mathematicae | 1998年 / 132卷
关键词
Exact Sequence; Vector Bundle; Algebraic Variety; Characteristic Classis; Smooth Complex;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Gauss-Bonnet theorem for the higher algebraic K-theory of smooth complex algebraic varieties. To each exact n-cube of hermitian vector bundles, we associate a higher Bott-Chen form, generalizing the Bott-Chern forms associated to exact sequences. These forms allow us to define characteristic classes from K-theory to absolute Hodge cohomology. Then we prove that these characteristic classes agree with Beilinson's regulator map.
引用
收藏
页码:261 / 305
页数:44
相关论文
共 50 条
  • [1] Higher Bott-Chern forms and Beilinson's regulator
    Burgos, JI
    Wang, S
    INVENTIONES MATHEMATICAE, 1998, 132 (02) : 261 - 305
  • [2] On Bott-Chern forms and their applications
    Pingali, Vamsi P.
    Takhtajan, Leon A.
    MATHEMATISCHE ANNALEN, 2014, 360 (1-2) : 519 - 546
  • [3] Bott-Chern forms and geometric stability
    Tian, G
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (01) : 211 - 220
  • [4] BOTT-CHERN HARMONIC FORMS ON STEIN MANIFOLDS
    Piovani, Riccardo
    Tomassini, Adriano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1551 - 1564
  • [5] Bott-Chern harmonic forms on complete Hermitian manifolds
    Piovani, Riccardo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (05)
  • [6] Bott-Chern cohomology of solvmanifolds
    Angella, Daniele
    Kasuya, Hisashi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 52 (04) : 363 - 411
  • [7] On the deformed Bott-Chern cohomology
    Xia, Wei
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 166
  • [8] Higher-page Bott-Chern and Aeppli cohomologies and applications
    Popovici, Dan
    Stelzig, Jonas
    Ugarte, Luis
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 777 : 157 - 194
  • [9] On Bott-Chern cohomology and formality
    Angella, Daniele
    Tomassini, Adriano
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 93 : 52 - 61
  • [10] Intersection theory and Chern classes in Bott-Chern cohomology
    Wu, Xiaojun
    ARKIV FOR MATEMATIK, 2023, 61 (01): : 211 - 265