Lifting of automorphisms and derivations of conformal Lie superalgebras to their central extensions

被引:0
|
作者
Mikhalev A.V. [1 ]
Pinchuk I.A. [2 ]
机构
[1] Moscow State University,
[2] Moscow State Regional University,undefined
关键词
Central Extension; Chevalley Group; Covariant Functor; Vertex Algebra; Surjective Homomorphism;
D O I
10.1007/s10958-007-0212-4
中图分类号
学科分类号
摘要
The paper is aimed at the problem of lifting automorphisms and derivations of a perfect conformal Lie superalgebra to its central extension. Such lifting is possible with the help of a universal central extension whose tensor model is constructed here for this purpose. © Springer Science+Business Media, Inc. 2007.
引用
收藏
页码:3333 / 3341
页数:8
相关论文
共 50 条
  • [41] Central extensions, derivations, and automorphisms of the super Heisenberg-Virasoro algebra
    Xiao, Mingyue
    Gao, Shoulan
    Pei, Yufeng
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (02) : 654 - 669
  • [42] Automorphisms of ore extensions by skew derivations
    Chuang, Chen-Lian
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2837 - 2847
  • [43] Quadratic Lie conformal superalgebras related to Novikov superalgebras
    Kolesnikov, Pavel S.
    Kozlov, Roman A.
    Panasenko, Aleksander S.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (04) : 1485 - 1500
  • [44] Minimal Faithful Representations for Trivial Central Extensions of Heisenberg Lie Superalgebras
    Lang, Shuang
    Liu, Wende
    Miao, Xingxue
    Wang, Shujuan
    JOURNAL OF LIE THEORY, 2024, 34 (03) : 639 - 652
  • [45] Central extensions of Lie superalgebras (vol 76, pg 110, 2001)
    Iohara, Kenji
    Koga, Yoshiyuki
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (04) : 985 - 986
  • [46] Extensions and automorphisms of Lie algebras
    Bardakov, Valeriy G.
    Singh, Mahender
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (09)
  • [47] Double Derivations of n-Lie Superalgebras
    Sun, Bing
    Chen, Liangyun
    Zhou, Xin
    ALGEBRA COLLOQUIUM, 2018, 25 (01) : 161 - 180
  • [48] Lie conformal superalgebras and duality of modules over linearly compact Lie superalgebras
    Cantarini, Nicoletta
    Caselli, Fabrizio
    Kac, Victor
    ADVANCES IN MATHEMATICS, 2021, 378
  • [49] EXTENSIONS OF REPRESENTATIONS OF LIE-SUPERALGEBRAS
    AMOR, HB
    PINCZON, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) : 621 - 629
  • [50] Generalized conformal derivations of Lie conformal algebras
    Fan, Guangzhe
    Hong, Yanyong
    Su, Yucai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (09)