Quadratic Lie conformal superalgebras related to Novikov superalgebras

被引:5
|
作者
Kolesnikov, Pavel S. [1 ]
Kozlov, Roman A. [1 ,2 ]
Panasenko, Aleksander S. [1 ,2 ]
机构
[1] Sobolev Inst Math, Akad Koptyug Prosp 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
关键词
Poisson superalgebra; Novikov superalgebra; Gelfand-Dorfman superalgebra; conformal superalgebra; ALGEBRAS; CLASSIFICATION;
D O I
10.4171/JNCG/445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study quadratic Lie conformal superalgebras associated with Novikov superalgebras. For every Novikov superalgebra (V, circle), we construct an enveloping differential Poisson superalgebra U(V) with a derivation d such that u circle v= ud(v) and {u, v } = u circle v - (-1)(vertical bar u parallel to v vertical bar)v circle u for u, v is an element of V. The latter means that the commutator Gelfand-Dorfman superalgebra of V is special. Next, we prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special Gelfand-Dorfman super(a)lgebra has a finite faithful conformal representation. This statement is a step towards a solution of the following open problem: whether a finite Lie conformal (super)algebra has a finite faithful conformal representation.
引用
收藏
页码:1485 / 1500
页数:16
相关论文
共 50 条