Branched combinatorial p-th Ricci flows on surfaces

被引:0
|
作者
Kaicheng Gao
Aijin Lin
机构
[1] National University of Defense Technology,Department of Mathematics
关键词
Branch structures; Combinatorial ; -th Ricci flows; Combinatorial Ricci potential;
D O I
暂无
中图分类号
学科分类号
摘要
For any p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and triangulated surfaces, we introduce the branched combinatorial p-th Ricci flows which exactly equal the branched combinatorial Ricci flows first introduced by Lan-Dai when p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}. Then using the techniques developed by the second author and his collaborators on the combinatorial p-th curvature flows, we show the long time existence and convergence of the solutions to the branched combinatorial p-th Ricci flows. Our results partially extend Lan–Dai’s work on the branched combinatorial Ricci flows from p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} to any p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}.
引用
收藏
页码:3363 / 3375
页数:12
相关论文
共 50 条
  • [1] Branched combinatorial p-th Ricci flows on surfaces
    Gao, Kaicheng
    Lin, Aijin
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3363 - 3375
  • [2] Combinatorial p-th Ricci flows on surfaces
    Lin, Aijin
    Zhang, Xiaoxiao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [3] Combinatorial p-th Ricci flows on surfaces
    Lin, Aijin
    Zhang, Xiaoxiao
    Nonlinear Analysis, Theory, Methods and Applications, 2021, 211
  • [4] Combinatorial p-th Calabi flows on surfaces
    Lin, Aijin
    Zhang, Xiaoxiao
    ADVANCES IN MATHEMATICS, 2019, 346 : 1067 - 1090
  • [5] VARIATIONAL PRINCIPLES AND COMBINATORIAL p-TH YAMABE FLOWS ON SURFACES
    Li, Chunyan
    Lin, Aijin
    Yang, Chang
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 315 (01) : 129 - 150
  • [6] Combinatorial p-th Calabi Flows for Discrete Conformal Factors on Surfaces
    Ke Feng
    Aijin Lin
    Xiaoxiao Zhang
    The Journal of Geometric Analysis, 2020, 30 : 3979 - 3994
  • [7] Combinatorial p-th Calabi Flows for Discrete Conformal Factors on Surfaces
    Feng, Ke
    Lin, Aijin
    Zhang, Xiaoxiao
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 3979 - 3994
  • [8] Combinatorial Ricci flows on surfaces
    Chow, B
    Luo, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 63 (01) : 97 - 129
  • [9] Combinatorial p-th Calabi Flows for Total Geodesic Curvatures in Hyperbolic Background GeometryCombinatorial p-th Calabi Flows for Total Geodesic CurvaturesG. Hu et al.
    Guangming Hu
    Ziping Lei
    Yi Qi
    Puchun Zhou
    The Journal of Geometric Analysis, 2025, 35 (1):
  • [10] Combinatorial Ricci flows for ideal circle patterns
    Ge, Huabin
    Hua, Bobo
    Zhou, Ze
    ADVANCES IN MATHEMATICS, 2021, 383