Combinatorial p-th Calabi flows on surfaces

被引:6
|
作者
Lin, Aijin [1 ]
Zhang, Xiaoxiao [2 ]
机构
[1] Natl Univ Def Technol, Dept Math, Changsha 410073, Hunan, Peoples R China
[2] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Circle packing; Combinatorial p-th Calabi flow; Combinatorial Ricci potential; KAZDAN-WARNER EQUATION; GRAPH;
D O I
10.1016/j.aim.2019.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For triangulated surfaces and any p > 1, we introduce the combinatorial p-th Calabi flows which precisely equal the combinatorial Calabi flows first introduced in H. Ge's thesis [9] (or see H. Ge [13]) when p = 2. The difficulties for the generalizations come from the nonlinearity of the p-th flow equation when p not equal 2. Adopting different approaches, we show that the solution to the combinatorial p-th Calabi flow exists for all time and converges if and only if there exists a circle packing metric of constant (zero resp.) curvature in Euclidean (hyperbolic resp.) background geometry. Our results generalize the work of H. Ge [13], Ge-Xu [19] and Ge Bua [14] on the combinatorial Calabi flow from p = 2 to any p > 1. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1067 / 1090
页数:24
相关论文
共 50 条
  • [1] Combinatorial p-th Calabi Flows for Discrete Conformal Factors on Surfaces
    Ke Feng
    Aijin Lin
    Xiaoxiao Zhang
    The Journal of Geometric Analysis, 2020, 30 : 3979 - 3994
  • [2] Combinatorial p-th Calabi Flows for Discrete Conformal Factors on Surfaces
    Feng, Ke
    Lin, Aijin
    Zhang, Xiaoxiao
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 3979 - 3994
  • [3] Combinatorial p-th Ricci flows on surfaces
    Lin, Aijin
    Zhang, Xiaoxiao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [4] Combinatorial p-th Ricci flows on surfaces
    Lin, Aijin
    Zhang, Xiaoxiao
    Nonlinear Analysis, Theory, Methods and Applications, 2021, 211
  • [5] Branched combinatorial p-th Ricci flows on surfaces
    Gao, Kaicheng
    Lin, Aijin
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3363 - 3375
  • [6] Branched combinatorial p-th Ricci flows on surfaces
    Kaicheng Gao
    Aijin Lin
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3363 - 3375
  • [7] VARIATIONAL PRINCIPLES AND COMBINATORIAL p-TH YAMABE FLOWS ON SURFACES
    Li, Chunyan
    Lin, Aijin
    Yang, Chang
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 315 (01) : 129 - 150
  • [8] Combinatorial p-th Calabi Flows for Total Geodesic Curvatures in Hyperbolic Background GeometryCombinatorial p-th Calabi Flows for Total Geodesic CurvaturesG. Hu et al.
    Guangming Hu
    Ziping Lei
    Yi Qi
    Puchun Zhou
    The Journal of Geometric Analysis, 2025, 35 (1):
  • [9] COMBINATORIAL CALABI FLOWS ON SURFACES
    Ge, Huabin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 1377 - 1391
  • [10] Combinatorial Calabi flows on surfaces with boundary
    Luo, Yanwen
    Xu, Xu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)