Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator

被引:0
|
作者
Xindong Ma
Qinsheng Bi
Lifeng Wang
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Aerospace Engineering
[2] Jiangsu University,Faculty of Civil Engineering and Mechanics
来源
关键词
Periodic bursting structures; Stability and bifurcation analysis; Melnikov method; Slow-fast analysis; Phase portrait superposition analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, complex bursting patterns caused by the coupling effect of different frequency scales in the Rayleigh–van der Pol–Duffing oscillator (RVDPDO) driven by the external excitation term are presented theoretically. Seven different kinds of bursting, i.e., bursting of compound “Homoclinic/Homoclinic” mode via “Homoclinic/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Homoclinic/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Hopf/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Homoclinic” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Hopf” mode via “fold/fold” hysteresis loop, bursting of “Hopf/Hopf” mode via “fold/fold” hysteresis loop and bursting of “fold/fold” mode are studied by using the phase diagram, time domain signal analysis, phase portrait superposition analysis and slow-fast analysis. With the help of the Melnikov method, the parameter properties related to the beingness of the Homoclinic and Heteroclinic bifurcations chaos of the periodic excitations are investigated. Then, by acting the external forcing term as a slowly changing state variable, the stability and bifurcation characteristics of the generalized autonomous system are given, which performs a major part in the interpretative principles of different bursting patterns. This paper aims to show the sensitivity of dynamical characteristics of RVDPDO to the variation of parameter μ and decide how the choice of the parameters influences the manifold of RVDPDO during the repetitive spiking states. Finally, the validity of the research is tested and verified by the numerical simulations.
引用
收藏
相关论文
共 50 条
  • [41] Complex order van der Pol oscillator
    Pinto, Carla M. A.
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2011, 65 (03) : 247 - 254
  • [42] FIRST INTEGRALS FOR THE DUFFING-VAN DER POL TYPE OSCILLATOR
    Gao, Guangyue
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 123 - 133
  • [43] MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR
    Chudzik, A.
    Perlikowski, P.
    Stefanski, A.
    Kapitaniak, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07): : 1907 - 1912
  • [44] Investigations on the bifurcation of a noisy Duffing-Van der Pol oscillator
    Kumar, Pankaj
    Narayanan, S.
    Gupta, Sayan
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 45 : 70 - 86
  • [45] Suppression of hysteresis in a forced van der Pol-Duffing oscillator
    Fahsi, Abdelhak
    Belhaq, Mohamed
    Lakrad, Faouzi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1609 - 1616
  • [46] Global Robust Synchronization of the Duffing System and Van der Pol Oscillator
    Sun, Weijie
    Cheng, Daizhan
    Huang, Jie
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 5396 - 5401
  • [47] Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit
    Vincent U.E.
    Nana Nbendjo B.R.
    Ajayi A.A.
    Njah A.N.
    McClintock P.V.E.
    International Journal of Dynamics and Control, 2015, 3 (4) : 363 - 370
  • [48] DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEMS
    Feng, Zhaosheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (06): : 1231 - 1257
  • [49] Stability and dynamics of a controlled van der Pol-Duffing oscillator
    Ji, JC
    Hansen, CH
    CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 555 - 570
  • [50] Multistability and organization of periodicity in a Van der Pol-Duffing oscillator
    Wiggers, Vinicius
    Rech, Paulo C.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 632 - 637