Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator

被引:0
|
作者
Xindong Ma
Qinsheng Bi
Lifeng Wang
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Aerospace Engineering
[2] Jiangsu University,Faculty of Civil Engineering and Mechanics
来源
关键词
Periodic bursting structures; Stability and bifurcation analysis; Melnikov method; Slow-fast analysis; Phase portrait superposition analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, complex bursting patterns caused by the coupling effect of different frequency scales in the Rayleigh–van der Pol–Duffing oscillator (RVDPDO) driven by the external excitation term are presented theoretically. Seven different kinds of bursting, i.e., bursting of compound “Homoclinic/Homoclinic” mode via “Homoclinic/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Homoclinic/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Hopf/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Homoclinic” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Hopf” mode via “fold/fold” hysteresis loop, bursting of “Hopf/Hopf” mode via “fold/fold” hysteresis loop and bursting of “fold/fold” mode are studied by using the phase diagram, time domain signal analysis, phase portrait superposition analysis and slow-fast analysis. With the help of the Melnikov method, the parameter properties related to the beingness of the Homoclinic and Heteroclinic bifurcations chaos of the periodic excitations are investigated. Then, by acting the external forcing term as a slowly changing state variable, the stability and bifurcation characteristics of the generalized autonomous system are given, which performs a major part in the interpretative principles of different bursting patterns. This paper aims to show the sensitivity of dynamical characteristics of RVDPDO to the variation of parameter μ and decide how the choice of the parameters influences the manifold of RVDPDO during the repetitive spiking states. Finally, the validity of the research is tested and verified by the numerical simulations.
引用
收藏
相关论文
共 50 条
  • [31] A van der Pol-Duffing Oscillator with Indefinite Degree
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Zhang, Baodong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [32] FREQUENCY RESPONSE OF A VAN DER POL-DUFFING OSCILLATOR
    HAAS, VB
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (02): : 334 - &
  • [33] A van der Pol-Duffing Oscillator with Indefinite Degree
    Hebai Chen
    Jie Jin
    Zhaoxia Wang
    Baodong Zhang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [34] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [35] Sufficient conditions for the existence of periodic solutions of the extended Duffing-Van der Pol oscillator
    Euzebio, Rodrigo D.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1358 - 1382
  • [36] Coexistence of Periodic, Chaotic and Hyperchaotic Attractors in a System Consisting of a Duffing Oscillator Coupled to a van der Pol Oscillator
    Tanekou, Sosthene Tsamene
    Ramadoss, Janarthanan
    Kengne, Jacques
    Kenmoe, Germaine Djuidje
    Rajagopal, Karthikeyan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (02):
  • [37] Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator
    Chedjou, JC
    Fotsin, HB
    Woafo, P
    Domngang, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (06): : 748 - 757
  • [38] Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator
    Woafo, P
    Chedjou, JC
    Fotsin, HB
    PHYSICAL REVIEW E, 1996, 54 (06): : 5929 - 5934
  • [39] Bursting oscillation and its mechanism of van der Pol-Rayleigh system under periodic excitation
    Tang J.-H.
    Li X.-H.
    Shen Y.-J.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (06): : 1067 - 1076
  • [40] Complex order van der Pol oscillator
    Carla M. A. Pinto
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2011, 65 : 247 - 254