POLYNOMIAL FUNCTORS AND TWO-PARAMETER QUANTUM SYMMETRIC PAIRS

被引:0
|
作者
VALENTIN BUCIUMAS
HANKYUNG KO
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Uppsala University,Department of Mathematics
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of two-parameter quantum polynomial functors. Similar to how (strict) polynomial functors give a new interpretation of polynomial representations of the general linear groups GLn, the two-parameter polynomial functors give a new interpretation of (polynomial) representations of the quantum symmetric pair (UQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {U}_{Q,q}^B $$\end{document}(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n), Uq(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n)) which specializes to type AIII/AIV quantum symmetric pairs. The coideal subalgebra UQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {U}_{Q,q}^B $$\end{document}(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n) appears in a Schur–Weyl duality with the type B Hecke algebra HQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{H}}_{Q,q}^B $$\end{document}(d). We endow two-parameter polynomial functors with a cylinder braided structure which we use to construct the two-parameter Schur functors. Our polynomial functors can be precomposed with the quantum polynomial functors of type A producing new examples of action pairs.
引用
收藏
页码:107 / 149
页数:42
相关论文
共 50 条
  • [31] Two-Parameter Quantum Groups and Drinfel'd Doubles
    Georgia Benkart
    Sarah Witherspoon
    Algebras and Representation Theory, 2004, 7 : 261 - 286
  • [32] Induced representations of the two-parameter Jordanian quantum algebra
    Dobrev, VK
    Mihov, SG
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1299 - 1305
  • [33] Two-parameter quantum groups with noncanonical commutation relations
    Brodimas, G.
    Jannussis, A.
    Mignani, R.
    Annales de la Fondation Louis de Broglie, 1994, 19 (1-2):
  • [34] ON FUSION PROCEDURE FOR THE TWO-PARAMETER QUANTUM ALGEBRA IN TYPE A
    Jing, Naihuan
    Liu, Ming
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2019, 14 (01): : 15 - 29
  • [35] Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 251 - 263
  • [36] Inequalities for Bochner's subordinates of two-parameter symmetric Markov processes
    Hirsch, F
    Song, SQ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1996, 32 (05): : 589 - 600
  • [37] Two-parameter deformed multimode oscillators and q-symmetric states
    Chung, WS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : 353 - 359
  • [38] Two Parameter Deformed Non-Extensive Entropy from the Two-Parameter Quantum Number
    Chung, Won Sang
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2016, 19 (03) : 158 - 161
  • [39] Nash equilibria in quantum games with generalized two-parameter strategies
    Flitney, Adrian P.
    Hollenberg, Lloyd C. L.
    PHYSICS LETTERS A, 2007, 363 (5-6) : 381 - 388
  • [40] Two-parameter counter-diabatic driving in quantum annealing
    Prielinger, Luise
    Hartmann, Andreas
    Yamashiro, Yu
    Nishimura, Kohji
    Lechner, Wolfgang
    Nishimori, Hidetoshi
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):