POLYNOMIAL FUNCTORS AND TWO-PARAMETER QUANTUM SYMMETRIC PAIRS

被引:0
|
作者
VALENTIN BUCIUMAS
HANKYUNG KO
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Uppsala University,Department of Mathematics
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of two-parameter quantum polynomial functors. Similar to how (strict) polynomial functors give a new interpretation of polynomial representations of the general linear groups GLn, the two-parameter polynomial functors give a new interpretation of (polynomial) representations of the quantum symmetric pair (UQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {U}_{Q,q}^B $$\end{document}(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n), Uq(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n)) which specializes to type AIII/AIV quantum symmetric pairs. The coideal subalgebra UQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {U}_{Q,q}^B $$\end{document}(gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{gl} $$\end{document}n) appears in a Schur–Weyl duality with the type B Hecke algebra HQ,qB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{H}}_{Q,q}^B $$\end{document}(d). We endow two-parameter polynomial functors with a cylinder braided structure which we use to construct the two-parameter Schur functors. Our polynomial functors can be precomposed with the quantum polynomial functors of type A producing new examples of action pairs.
引用
收藏
页码:107 / 149
页数:42
相关论文
共 50 条
  • [21] NOTES ON TWO-PARAMETER QUANTUM GROUPS, (II)
    Hu, Naihong
    Pei, Yufeng
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3202 - 3220
  • [22] Two-parameter deformed quantum mechanics based on Fibonacci calculus and Debye crystal model of two-parameter deformed quantum statistics
    Abdullah Algin
    Won Sang Chung
    The European Physical Journal Plus, 139
  • [23] Two-parameter families of quantum symmetry groups
    Banica, Teodor
    Skalski, Adam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (11) : 3252 - 3282
  • [24] Two-parameter deformed quantum mechanics based on Fibonacci calculus and Debye crystal model of two-parameter deformed quantum statistics
    Algin, Abdullah
    Chung, Won Sang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [25] Vector space of linearizations for the quadratic two-parameter matrix polynomial
    Adhikari, Bibhas
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 603 - 616
  • [26] Comparison of estimation limits for quantum two-parameter estimation
    Yung, Simon K.
    Conlon, Lorcan O.
    Zhao, Jie
    Lam, Ping Koy
    Assad, Syed M.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [27] Two-Parameter Quantum Algebras, Canonical Bases, and Categorifications
    Fan, Zhaobing
    Li, Yiqiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (16) : 7016 - 7062
  • [28] Invertibility and Estimation of Two-Parameter Polynomial and Division Lens Distortion Models
    Santana-Cedres, Daniel
    Gomez, Luis
    Aleman-Flores, Miguel
    Salgado, Agustin
    Esclarin, Julio
    Mazorra, Luis
    Alvarez, Luis
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (03): : 1574 - 1606
  • [29] The knot invariant associated to two-parameter quantum algebras
    Fan, Zhaobing
    Ma, Haitao
    Xing, Junjing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (11)
  • [30] Two-parameter quantum groups and Drinfel'd doubles
    Benkart, G
    Witherspoon, S
    ALGEBRAS AND REPRESENTATION THEORY, 2004, 7 (03) : 261 - 286